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Abstract:

Organofluorine compounds are an important class of molecules that are widely used in
various fields, including the pharmaceutical sciences, agrochemistry, and materials
science due to their unique physicochemical and biological properties. Tranditionally,
organofluorine compounds are prepared through construction of carbon-fluorine (or
moieties including fluorine atoms) bond. This project is intended to realize the
construction of difluorobenzylic arrays through selective carbon—fluorine bond cleavage
of trifluoromethylaromatic motifs via single electron transfer (SET) based on the poor
electron density. The project is consisted of the following three aspects: 1)
Visible-light promoted selective carbon—fluorine bond cleavage/functionalizations of
trifluoromethylaromatic motifs via a catalytic way; 2) Silicon-based reagent promoted
selective carbon—fluorine bond cleavage/functionalizations of trifluoromethylaromatic
motifs via exciplex; 3) Mechanistic studies

The project will provide a novel strategy to construct difluorobenzylic compounds
without pre—functionalizations, which is in consistent with the concept of green
chemistry.
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Keywords (FH43r54FF) : organic photochemistry; radical reaction; selective
cleavage; functionalization; difluorobenzylic derivatives

b
N
=



. N 5% [ SRR 40 H

MBEFERR
HAHET
G5 k44 WA A IR =20 PR 4 TR L1 R 15 WH T 1”5%“!‘)57
1 Wit 1990.02 | 5 s it MR R 020-87111141 gig§2219900216 WREKISPN 10
PR ¢ =T Hh 2 B2 W45 A i+




PN

[ 5 B AR AR T R

ERBARFEEHBEEERMESR

(EFHMNED

T H keSS 22001079 WH BTN Wi ST )0
Jr5 BFH 24 FR G0
1 W H ERE S A 24. 0000
2 I, w&oh 2. 0000
3 (1) B & T 2.00
4 (2) el o 0. 00
5 (3) B T kit By ML B 2 0. 00
6 2. Mk 7.20
7 3. Mg hn T 9% 6. 30
8 NI S IPAN 1.50
9 5. Zh/ U/ EbrEAE LA o 1. 50
10 6. HHh/ SCER/ A AL R/ AU AL 55 o 1. 00
11 . Fi%ER 3. 60
12 8. LHEREM 0. 00
13 9. HAth3H 0.90

B
=



o 1% SRR AT H

FEEAB (Emae)

CFER (AXEARFELTETERRFRA) FWERER, NEMLUHETRERRMNEES, UREMF

R F S, ENZ107 THRERFAEZHATLERHA.D

I H i EBEAEFH 2475 7T:

1. W&H2M6: TR E S F/NUES, WhEZE, HETZE, KRG, Wi, DIAS =
REVH NGB .

2. MEIERT.2750: HTWESEIE TR AR AT, i, BHLERIRASARSE, Rk, HEK,
W

3. WHAMIR N T9%6.37570: H T oAl 2, QFHZEEIE (242100014, Bl (£/02001/
), FEPRE (EA1000M4E), HEATH (3-5N4E), UURITERMT. OHNERIE, fikZ, H
=R, .
WRELEN 321550 REUXER & THFHFRE TR, B A BENEFES: %
RIS VIEPREE S M w15 o6: AT SMENIMERSW, FARREH, GFEER, L,
B8, MRS, EANBUHEZ400000/ K, HLiH4 N, BiF15) TG,
HRSCHRME BAR R = 5 21 o0 AT BRI R 3, R SCami . i 955 .
555 9%3.6/7: FHT-Z i H Wt 704 10 o RHE RN o
3ZWItA: 40070/ N A*10 H/F*34)*3=3.6 /it

9. HAhZH0.9/57C: FTENEURMIT TR MFEM T G HARRI SO H




o 1% SRR AT H

WEFIES

WFFT N ARSI H Az I s BT

81T



AQL H % B AR RS T E I $
IR B ARS RS AT B EHEER

T REEEEROARRGE, HHEA, TE B T |
#&a)ﬁnfrim)\**ﬁﬁzﬂﬁ H c%t?&ﬁ 22001079) F’% , &j“ |
e, DRRESR LI, WTERATH. L s @é ki)
DA XA, RNAETANES, MEYmELE | e\ ErgH R S
B AR T SRR ML HEAT AR o WA LA 1

|

Sy i
mrsEA e . 0 AR i s R

S0y % [0 AX| B 2

s zozae@ I:D,:&E] 23 H |
RS R DRER A RBERESTE, KORIETH J\m)\&ﬁﬁfffmﬁx_ TR R "'Iﬁ H kﬁﬁﬁﬁ

g, TR ER B RRRE RS E RS K B H R ﬁﬁﬁﬁéu S

EEF Ry |

|
o |
s |
B ekt (RREE N EEERL B4 AT
i ERE | R | B | St | B | BINE | AL
BTN (L5

& | &H 4
&
g [ R
5 ;
A ek o) 2 A s
R \
H |
£ BRAN (BE3) i
= £ B H |
i'i FAT B L . |
& |
;; NS (BE) \
g £ B A |
a5 |




AQL H % B AR RS T E I $
IR B ARS RS AT B EHEER

T REEEEROARRGE, HHEA, TE B T |
#&a)ﬁnfrim)\**ﬁﬁzﬂﬁ H c%t?&ﬁ 22001079) F’% , &j“ |
e, DRRESR LI, WTERATH. L s @é ki)
DA XA, RNAETANES, MEYmELE | e\ ErgH R S
B AR T SRR ML HEAT AR o WA LA 1

|

Sy i
mrsEA e . 0 AR i s R

S0y % [0 AX| B 2

s zozae@ I:D,:&E] 23 H |
RS R DRER A RBERESTE, KORIETH J\m)\&ﬁﬁfffmﬁx_ TR R "'Iﬁ H kﬁﬁﬁﬁ

g, TR ER B RRRE RS E RS K B H R ﬁﬁﬁﬁéu S

EEF Ry |

|
o |
s |
B ekt (RREE N EEERL B4 AT
i ERE | R | B | St | B | BINE | AL
BTN (L5

& | &H 4
&
g [ R
5 ;
A ek o) 2 A s
R \
H |
£ BRAN (BE3) i
= £ B H |
i'i FAT B L . |
& |
;; NS (BE) \
g £ B A |
a5 |




Lurﬂrﬂrﬂ_rﬂrﬂrﬂrﬂ_rﬂrﬂrﬂrﬂrﬂ_rﬂrﬂrﬁﬂrﬂFﬂrﬂrﬂrﬂrﬂrﬂrﬂrﬂrﬂrﬂrﬂrﬁﬂrﬂrﬂrﬁﬁﬁ

B €0 H IT 4 020C

* UOIBPUNO 32UBIIS
[240190P1S0d euUIYD J0 dIysmo||a) syl papaeme si Jspjoy S SaljI1189 81eal1411489 8y L

°*¥69C8IN0TOT MG I[HY £ — ¥ T BWg9¥
THEHIYTHEEYW (T LIS IHET) ww EYXTESY

2l lrelrelfelrelrelelrelrelfel relreiel rlreielelreieielele
elfelfelfeifelfelrairelfalfalairalfalralrlralfel i il il

=l

E e e e e e e e e e e e T e T T e e e e e e e e e e e BT B T e el




SIS SL2024A04700151

J- M A sCTXITE
L&

I H &K B B B AR ] E AR KA B R L R

LK E A FRRILAF

TERARA:  HE

REESAE A A A 5 1 K

T ALK 20254 & H Ak 5 i 2w B 5 AT

& yAE FHEEL “Bi” HE

B ErER LA

A kb ) ; 2025-01-01 £ 2026-12-31

FERE: SlHEAHEEL BEALLD
;N R FEB AR

—OZ g4



HE U

—. EFARECOAE R R, AT RETE A A B
MMIEE . FaEEER.

= BEHARMEN., ERRKBRFTAL, HELHTE
iz, Regdmd X, EAXTFHAK, THITL0F T,

= RERFER TMBEART ALET. RE, T
TFEL TR FAM AL

o, ERAFEULN, HERATLLHET, FHEMN
NE—H

. WEIEEE T MBSO T8 F 4 e TR
AR, #REERELEAT. WRit,

N AFRFFALELFEENAL, MEZERX] /7
, A T BT

t. FRENETZBRITEIRFELHEET, BEEXF
KAEBRN, THRERETH.




TN gzk% 4%\

TH
B

(>

a

T H 4 # TEE A E BRI R A A R A
AT L 5 AR - B E-F WL A KB LA KR
= A4 352 W EAER-FHIFE-FEHIFE-T
5™ &M H 202444 F 15 H
B IE TR K _ - 202541 A 1 H-
A 5A T AR 2026412 A 31 F

T H
RS

[EHEFME, EER, RZVENTETE, SREFETAEEE
KRR KN FHRE . ATE G EAATHUR R LI 8 o &
B R R ST R A A A R LN RA . ATUE ML T B 7 ' T &
Tf: D FHUR a8 aFRLFFHERLIL; 2) KELE
F. ABEERTEALRAFGRBE T FHUIRS = EA B b 20 R
, AETHEZREHORE EEE KRR, HREBENTRERMERT

%%/E\Ego




—. HIRELELR

T

N

#

{ir

Blhghk | EERLAF | GomspArm |PHOD O
EMEE | 1952-01-01 BARA = 4 AR
TE A JTRAG N TR X L #4835
7 H JEAT M RAKX AL %4835

2 17 & 2

BRA A FNZ 13711345768
WL T H A kjcgxk@scau. edu. cn

It P #RAT JTRTMN AT 2L AT
PP 4 KR AF
RATK S 3602002609000310520




= WMERTRAER

4 M KA & HHE
L5 340322199002162438 1 A 5
& F A 1990-02-16 Kk Ve
f& & ¥ 7 HLEHRAE
2 L R +H
BR % H BR AR 7
Fref &k ¥ FAF 18818914392
7 BB T 020-85280319 BB 4 boya“g@sga“' edu. ¢




. MELRER

ABEEHEN: ¥ (B) fm, HF, THBRMKESE: ¥ (5) Ax, BFL%: ¥ (0)

J1 T o

1. &% TiAitK

K4 KR /Nt R R £ B HE&EZ#
2025 5 5 0
Bt 5 5 0
(EAfr: A 0D

Er ALRAHN “ATH”,

AEHAT.

TR RAREFETABOTRIMELSE “BTH” HxX




Fi. FURARERMERR

T AR AETE LN, UZBEE N RTE HEFUTSMERZ
—HZBERBFEANEN, HHEFEwFZFEERLTEK,

(—) THZwEHN, UE—1EH/BRIEH XKL XIRBBU L (JiFFE
KBRS ;

(Z) BEmIN, UF—TRAFFREAEA ., RHEFEITELL
&5

(=) BE®IN, FERUERFITXITE A A TE L FHF1TE L
&5

(M) THEZwIN, FERUEBELR (7 AFKLER TS 2
1T LAk

(ZL) FHEIZwmHN, RERERT



o A | AR
iﬁfﬁ R A

TH & TEPEE B o VT A R R A R

2. Vack 20255 R EMEMAEMARLTA-FEEL “EM” HE

HIFARIE:

AANRETE #RAEFWERERELTE GRAD ®fH, £
EAW: PHRET (RTH P hrBRMAFREAEINETEL) (T#
—FIIRFEZ N RERAMFREZHEIL) FHXRAR, H4E
MEEREHEATALBEETAR) (BREEABAELI9T) FHIEA
A, Frefat R N AR, TFAEEHEHIWEERETA
; DHERESE T MAHERFE RARA R AE £ HR s T U X L
WA, FRMATE (FEARIMERTERBEE) B (FFEH
ARBEAR) FHREEEN, FEEFLTIRER;, £S5 MTFH
FOATXITE B4R, FFEFALEELEF, BTFREUAG R FEE, BT
TE AN A AL E, HUBLUUTATA:

(=) P&, AGHARFERRSIENE., ERFAAHE. FARERIE
e Fo AR AT A A IR P AAT A 5

(=) M, K5, KRB, EHEATFREZEIFNERL;

(=) BwRWXELNT, B EAFEREBATERE R BRI F % B
() & KA EA

() FEMER, WRABOGTXITE. BRFAELHFURLE. REF;
GO AFRFFUREFELIFF, EEHFFETHRKEERERETF

5 A8 LI AT ;
(1) UEARREFTHAATNTHFEREEREMITFFLRFRE
/Tg /é\ 5

D) AANBRZAMABLEMFXREMBERART X T X AT HHR.
Fit, HAEFF L WFERFRATF LRI TEAR. @FFFHHARIE




A WA AT S B T F A aE R T s R A

L mIFHETEAR, FEFLREFRBEEAHLANALE, L&, AL
. XHRIE. LA+, BFaa, SBREEE. KiE. REAEEF
AT VT RE B2 7 o A IR BV Bl 5

(+) e RMELEmExEEZNZHTH,

WRER, KRAREZTHEENAMERM TR ENETLE LT, &
FESRTEOHIE (RAD AEHH, BEME GRA) 4%, mita
WAREAE I, BOH— ZHRS MRS TR F /T, BARFR
BFERGATAREEUREZ AL X LHLLEE,

BT R
HH:. 2024405506 H




AHE A

AEMRETNEFREFTNESF TR, "HETAELCRR, BRFH
ERERE, EWHERE:

PRET (RTH—FPwBRMAFREERNETEL) (XTH—FLH
MEFE mRERMFRERNTIL) S8 KL C R EZRE
A, BHERESET HFHERFRARBREEERTE; T UEMYR LM
HERATH, FRMAFE (FEARXMERTERXBE Z) o (FFEARK
BEAR) FHREEEN, FeltdsTERER; £S5 5TH #RMWITFiE
HeRET, BFHRTFFANWTELE, HEUTTH:

(=) XBERSEEAWE. E6. 25, ARELAFRETLLFEHR
BURHB X T H A& 31 455

(=) UEMHARTANTHITPF LR G ERAMTHFLREFNRER

P

(=) ALASMHTEHANRIFFIEAR., TFEREFREETHLAL
i, e, AMEH. XAFEIE. BLHfFF. e Foa%; ZHEFFAL
#H.WHFER, REFFHARE ., PEFEREERE. REEEET R RIT
TN EMIER

(H) @, DETEEANER=HRIE, £ERRERFHITRTE ;

(I af. PETEBRN, EEHBIEEARNRR “TEE” FH73,
BOVE VR N IE

GR) EEXFHRAPUBHFBELTF, EEE5HLITHKELETERK
E5H A PLIEAT

(1) HEeHRMELEREXETENEHTA.

WEER, AEMREZTE EEAM A KT TR ENETLAERE,
AHEESRTERSIZBE R, BEIE CRED 2%, BUH—ZHRMT
M RIIE R, DARFRE T ERETAHKEES,

ARERAL: EFLNAF
HE#: 20244054506 H




. BALER

AEEMARNL:

17

HREEMARN:

17

HHi: 20244805 F[24H

H#: 2024407 A 11H




SCAULIB202519265

18 Uk AR

RESEARBHRIN, BRACHRUAEHSRBELR HY 5 & iilﬁzs?él‘*» Tk,

FF
B Az B RENNW R RRIFER &

Diverse synthesis of C2-1inked

B BT “Fﬂlﬁjt%@ﬁ}

NATURE COMMUNICATIONS
HAREE: 2022

et ET 1

IF2-year=16. 6 X
functionalized molecules via HARH#H: APR 6 .
1 SCI IF5-year=17.0 | Top #iT|: &
molecular glue strategy with SR 13 1 085 -
(2022) (2022)
acetylene YiEhS: 1858

SCRASREY Are%%

NATURE COYMUNICATIONS
Hydrogen radical-shuttle (HRS)- @ 2021
, enabled photoredox synthesis of i K #H: SEP 6 e |10
indanones via decarboxylative Y HHH: 12 1 70f5: -
annulation | kS : 5257
Ve WHRIEEL: Article

A CHEMICAL SCIENCE
w Hi R : 2024 |
Direct synthesis o‘h\,aélkyl ketones LIS, NOV 13 LR
3 |from deoxygenative cross—coupling of | F—EE |T2 K| MBI S5REIREFE

et 1

IF2-year=17. 694 X
J1F5-year=17.764 | Top Jifl: &
' (2021) (2021)

IF2-year=1. 4

okl IF5-year="7. 8

15 44 18405-
—— o 5z (2024)

18410
WERRAY. Article

carboxylic acids and alcohols

gr1?1/##2?'1

W WPS Office
HRIBENTE - WPSHARRH 1




SCIENCE CHINA-CHEMISTRY
Bifunctional two—carbon reagent made W

HRREE: 2024 R T K& [F2-year=9. 7

from acetylene via 1, 2-
4 | o Hi R H 3 MAR B—EH (T2 K| BRI
difunctionalization and its |

. 67 3T1fS:. 936-944 [S;E‘D%m
VPRI, Article

SCI IF5—year=8. 4
(2024)

applications

CHINESE JOURNAL OF

CHEMISTRY
Visible Light—Promoted Three- == 4 [X
AR 2018 | IF2-year=2.376 | e
Component Carboazidation of Top XA
5 H AR HXH: NOV SCI [F5-year=1. 679
Unactivated Alkenes with (2018)
49, 36 11 TfS: 1017- ?» (2018)

TMSN<sub>3</sub> and Acrylonitrile

1023 CD
SCRRRAY - A\r@‘ﬁ
WA

BE: WXHRAPRPEARESXE (FRRIVKFZZRRGHITR (B4 *?Q, :$\
[ X

£ 2T70U/# 2 N

W7 WPS Office
IRIQENTE - WPSIHEBIIIE




A RTl C L E W) Check for updates

Diverse synthesis of C2-linked functionalized
molecules via molecular glue strategy with
acetylene

Bo Yang® !, Shaodong Lu?, Yongdong Wang® 2 & Shifa Zhu@® '®

As the simplest alkyne and an abundant chemical feedstock, acetylene is an ideal two-carbon
building block. However, in contrast to substituted alkynes, catalytic methods to incorporate
acetylene into fine chemicals are quite limited. Herein, we developed a photoredox-catalyzed
synthetic protocol for diverse C2-linked molecules via a molecular glue strategy using gas-
eous acetylene under mild conditions. Initiated by addition of an acyl radical to acetylene, two
cascade transformations follow. One involves a double addition for the formation of 1,4-
diketones and the other where the intermediate vinyl ketone is intercepted by a radical
formed from a heterocycle. In addition to making two new C-C bonds, two C-H bonds are
also created in two mechanistically distinct ways: one via a C-H abstraction and the other via
protonation. This system offers a reliable and safe way to incorporate gaseous acetylene into
fine chemicals and expands the utility of acetylene in organic synthesis.

TKey Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of
Technology, Guangzhou 510640, China. 2 Singfar Laboratories, Guangzhou 510670, China. ®email: zhusf@scut.edu.cn
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s the simplest alkyne, acetylene has traditionally been

viewed more as a fuel than as an economical chemical

feedstock, though it is widely used in chemical industry,
with an estimated annual goal production of over one million
tons!. The high-volume industrial use of acetylene includes the
production of vinyl-containing monomers, such as vinyl amine,
vinyl chloride, acrylic acid and its derivatives, used for polymeric
materials, in other chemical commodities and as feedstocks? 4.
The spatial orthogonality of the two independent m-systems in
alkynes can be used for the discovery, design and control of the
new cascade transformations®. However, in contrast to other
substituted alkynes, a very limited number of catalytic protocols
directly incorporate acetylene into fine chemicals. This is probably
due to the greater inherent strength of the m-bonds®, higher
activation energies for reactions® and, especially, apprehensions
about handling an explosive® and flammable gaseous reagent. In
fact, reactions exploiting acetylene at atmospheric pressure (1 atm)
are uncommon!~47-14. Moreover, the instability of its possible
intermediates, the terminal vinyl radical'>!® and, especially, the
cation!” has traditionally restricted its conversion. Circumvention
of these obstacles would undoubtedly boost the use of acetylene as
a reagent in modern organic synthesis involving complex small
molecules. Currently, the catalytic transformations of acetylene
into fine chemicals are mainly focused on simple mono-
functionalizations, such as vinylation?37-10:131418,19 " the Sono-
gashira coupling reaction2?21, and cyclization®?2. In addition,
construction of other molecules with different levels of molecular
complexity! 12:21-23 s of interest (Fig. 1a). To effectively intro-
duce acetylene in synthesis, competing reactions, such as the
generation of more reactive substituted alkynes or alkenes from
acetylene, need to be avoided. Despite elegant synthetic develop-
ments, effective catalytic strategies to incorporate acetylene gas
into fine chemicals remain scarce.

A variety of structurally complex and biologically active molecules
or their precursors can be regarded as two components linked with a
saturated two-carbon unit?4-26 (Fig. 1b). Ideally, it would be
desirable to bridge two or more simple molecules simply through
their exposure to a C2-synthon in the presence of a catalyst. This
would provide an efficient platform to quickly construct the target
molecules and offer molecular diversity via the molecular glue
strategy?’. As the simplest and abundant unsaturated two-carbon
molecular building units, ethylene!>2829 and acetylene?37-1218-23
have been employed as C2 building blocks for the formation of fine
chemicals. In fact, due to the presence of two addressable mt-systems,
acetylene can be used as a carbon glue’, a type of molecular glue,
that connects molecules through sequential transformations of the
two m-bonds, which mutually complements the ethylene transfor-
mation field12282931,32 (Fig 1¢). Given 1,4-diketones have great
importance as versatile intermediates for the synthesis of some
bioactive molecules®3, natural products and related compounds3432,
along with the ubiquity of bioactive molecules containing a carbonyl
group linked to a heterocycle moiety?® by a CH,-CH, bridge,
developing a general methodology to quickly access these com-
pounds via a molecular glue strategy from readily available mole-
cules and abundant feedstock would be highly desirable, especially
in drug discovery chemistry3°.

Photocatalysis has recently emerged as a powerful platform for
the direct functionalization and activation of organic compounds
via open-shell pathways under mild conditions®’~#2. As one of
the most widely exploited transformations within the realm of
open-shell chemistry, the direct addition of carbon radicals to
carbon-carbon m-bonds has been broadly leveraged to effect
carbon-carbon bond formation with alkenes#3#4, Encouraged by
these developments, we wondered if it is feasible to utilize the
highly reactive terminal vinyl radical, generated through the acyl
radical addition to acetylene, to accomplish the C-H abstraction

from suitable hydrogen donors, followed by a Giese radical
addition*>49, resulting in the formation of 1,4-diketones or
connecting the carbonyl group to heterocycles via a two-carbon
unit (Fig. 1d). However, the direct addition of most common
radicals to unactivated alkynes, especially acetylene, to obtain the
terminal vinyl radical, is a really big challenge due to (i) the
diminished rate of C-C bond formation owing to increased
activation barriers!>>%°1 and (ii) the in situ generation of high-
energy vinyl radical intermediates that are highly unstable, have a
short lifetime, and readily participate in various undesirable
open-shell pathways. To the best of our knowledge, direct addi-
tion to acetylene producing a terminal vinyl radical followed by
functionalization is rarely reported®. In addition, the various
radicals formed can react with the acetylene or the newly formed
alkene generating undesired products. Importantly, how to
selectively generate the desired product is also a big problem.
Using the polarity matching effect, a subtle yet important element
in radical addition process®?, the generated product may be
controlled by varying the electronic properties of the hydrogen
donors. In addition, side reactions may be limited by quenching
the radical intermediate formed by the C-H abstraction from the
hydrogen donor.

In this work, we developed a photoredox-catalyzed synthetic
protocol for diverse C2-linked molecules via a molecular glue
strategy that employed gaseous acetylene under mild conditions
(Fig. 1e). Formally, aryl ketones were linked to aryl ketones, or
linked with heterocycles by CH,-CH, bridges, resulting in the
formation of two C-C bonds and two C-H bonds. Mechanistic
experiments demonstrate that the two C-H bonds are created in
two mechanistically distinct ways, one via a C-H abstraction and
the other via protonation.

Results and discussion

Reaction development. To start our investigation, the synthetic
method for 1,4-diketones was explored with the commercially
available a-oxocarboxylic acid 1a as the model substrate, acet-
ylene gas as the C2-linker reagent, K,HPO, as the base, H,O as
the hydrogen source and Ir[dF(CF;)ppyl.(dtbpy)PFs as the
visible-light photocatalyst at room temperature under the irra-
diation of blue LEDs. From a mechanistic perspective, the highly
reactive vinyl radical should abstract a hydrogen atom from a
solvent Csp>-H bond because of the Csp?-H’s higher bond dis-
sociation energy (BDE)*4%>. To our delight, the reaction in a
solution of DCM/H,O (v/v) (3/2) afforded the desired 1,4-dike-
tone 2a in 10% yield (Table 1, entry 1). Examination of a range of
photocatalysts revealed that Ir[dF(CF;)ppyl.(phen)PFs was
superior with respect to reaction efficiency, yielding 2a in 16%
yield (entries 2-4). Various solvents, such as acetone, N,N-
dimethylformamide, acetonitrile, and tetrahydrofuran, were used
instead of dichloromethane (entries 5-8) and the results indicated
dichloromethane was more suitable for this transformation. The
concentration of la and the amount of water may affect the
reaction efficiency. When 1a was decreased to 0.05 M, 38% iso-
lated yield of 2a was obtained (H,O (5 equiv.), 24 h) (entry 9).
Prolonging the reaction time (36 h) did not improve the yield of
2a (entry 10). Further reducing 1a to 0.025 M improved the yield
to 51% (entry 11). A slight decrease in the yield was observed
when the concentration was further reduced (entry 12). Using
other inorganic bases did not positively affect the reaction effi-
ciency (entries 13-15). Gratifyingly, the yield of 2a could be
greatly improved to 79% by increasing H,O (20 equiv.) (entry
16). Further increasing the amount of water decreased the yield
(entry 17), which means the amount of water has an important
effect on the yield.
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Fig. 1 Synthesis of C2-linked molecules with acetylene via molecular glue strategy. a Present situation of acetylene transformations. b Representative
C2-linked molecules with bioactivity. € Quickly assembling functional molecules via a molecular glue strategy with acetylene. d Design for synthesis of C2-
linked molecules with acetylene. e Diverse synthesis of C2-linked molecules with acetylene. DCM, Dichloromethane.

Reaction scope investigation. With the optimal reaction condi-
tions in hand (Table 1, entry 16), we next investigated the scope
of a variety of a-oxocarboxylic acids summarized in Fig. 2. The o-,
m- and p-methyl groups on phenyl a-oxocarboxylic acids were
tolerated (2b-d). A number of phenyl a-oxocarboxylic acids
bearing electron-donating groups, including not only 1°-alkyl
groups but also more hindered 2°- and 3°-alkyl groups, were
converted into the corresponding 1,4-diketones in good yields
(2e-1). The 3,5-dimethyl substituted substrates was transformed
into the desired compound in 68% yield (2m). Halogenated
phenyl substrates were incorporated into the corresponding

compounds with slightly lower yields (43-66%) (2n-q). The
phenyl a-oxocarboxylic acid bearing a strong electron-
withdrawing group underwent smoothly to afford 2r in 50%
yield. Notably, 2-(2,3-dihydro-1H-inden-5-yl)-2-oxoacetic acid 1s
and 2-0x0-2-(5,6,7,8- tetrahydronaphthalen-2-yl) acetic acid 1t
provided the corresponding 2s and 2t in moderate yields.
Importantly, the methoxy-substituted long chain substrate 1u was
also suitable for this transformation giving 2u in moderate yield.
Moreover, the 2-adamantanol-derived a-oxocarboxylic acid 1v
and L-menthol-derived a-oxocarboxylic acid 1w reacted
smoothly under the standard conditions to furnish the
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Table 1 Optimization of the Reaction Conditions.

1 mol% PC o]
120 mol% base

o H
OH
Ph .
o H

12 W blue LEDs, rt

Ph
Ph

PFg

tBu

N\ 7/ \ 7/

tBu

Ir[dF(CF3)ppyl,(dtbpy)PFe

Solvent, H,0,12 h o]

1a 1 atm 2a
Entry PC Base Solvent Yield (%)?
1 Ir[dF(CF3)ppyl>(dtbbpy)PFs K,HPO, DCM/H,0 (3/2) (0.1M) 10%
2 4CzIPN K,HPO, DCM/H,0 (3/2) (0.1M) 0
3 Eosin Y K,HPO, DCM/H,0 (3/2) (0.1M) 0
4 Ir[dF(CF3)ppyl.(phen)PFg K,HPO, DCM/H,0 (3/2) (0.1M) 16
5 Ir[dF(CF3)ppyl.(phen)PFq KoHPO, Acetone/H,0 (3/2) (0.1M) 0
6 Ir[dF(CF3)ppylo(phen)PFg K,HPO, DMF/H,0 (3/2) (0.1M) 0
7 Ir[dF(CF3)ppylo(phen)PFg K,HPO, MeCN/H,0 (3/2) (0.1M) <10
8 Ir[dF(CF3)ppyl.(phen)PFg K HPO, THF/H,0 (3/2) (0.1M) <5
9b Ir[dF(CF3)ppylo(phen)PFg K;HPO, DCM (0.05 M) 38
10¢ Ir[dF(CF3)ppyla(phen)PFg K,HPO, DCM (0.05 M) 34
1P Ir[dF(CF3)ppyl(phen)PFg K,HPO, DCM (0.025 M) 51
120 Ir[dF(CF3)ppylo(phen)PFg K;HPO, DCM (0.017 M) 44
13b Ir[dF(CF3)ppylo(phen)PFg K,CO4 DCM (0.025 M) 26
14b Ir[dF(CF3)ppyl2(phen)PFg KF DCM (0.025 M) 49
15b Ir[dF(CF3)ppyl(phen)PFg KsPO, DCM (0.025 M) 19
164 Ir[dF(CF3)ppyl2(phen)PFg K,HPO, DCM (0.025 M) 79
17¢ Ir[dF(CF5)ppyl-(phen)PF¢ K,HPO, DCM (0.025 M) 49

 IHAF(CF3)ppyl,(phen)PFs

:ﬁi&” o

(]

R= carbazolyl

4CzIPN Eosin Y

photocatalyst.

1a (0.3 mmol). Yields of 2a were determined by TH NMR with mesitylene as an internal standard. PH,O (5 equiv.), 24 h, isolated yield. ¢H,0 (5 equiv.), 36 h, isolated yield. 9H,0 (20 equiv.), 24 h,
isolated yield. ®H,0 (40 equiv.), 24 h, isolated yield. dF(CF3)ppy, 3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyllphenyl; phen, o-Phenanthroline; DCM, Dichloromethane; equiv., equivalent; PC,

corresponding desired compounds 2v and 2w in moderate yields.
These results show a great potential for the structural modifica-
tion of an array of complex biological molecules in medicinal
chemistry. Notably, various experiments with substrates con-
taining redox non-innocent substituents, such as amino-, phe-
nolic hydroxyl-, vinyl-, alkynyl- and hydroxyl-substituted, were
also performed under the standard conditions. Unfortunately,
these functional groups were not compatible with our system.
Considering these results, we turned our attention to test other
hydrogen donors, specifically nucleophilic hydrogen donors. These
donors would generate radical intermediates from C-H abstractions
by the highly reactive vinyl radicals. The resulting C-H abstracted
radical intermediate reacted well with the electron-deficient
alkenes**~#8 to furnish the desired compounds containing the
carbonyl group and nucleophilic component linked via a CH,-CH,
bridge. In 2016, Knowles® reported an elegant intermolecular C-H
functionalization to construct similar molecules in moderate yields
using stoichiometric N-ethyl-4-methoxybenzamide as the abstractor.
This abstractor has the potential to serve as a structurally modular
catalyst for radical C-H functionalization. Though powerful, the
preparation of the vinyl ketone and additional reagents to activate
the substrate were required for the reported method. If the vinyl
radical generated in our system could be used as the abstractor, it
would be highly desirable. Due to the prevalence of furan-containing
compounds®”8, THF was subsequently explored as a hydrogen

donor and furan source, as well as the solvent. In fact, 13% yield of
the tetrahydrofuran linked compound was isolated during the
optimization (Table 1, entry 8). A considerable increase in yield was
obtained with a slight variation of the reaction conditions (Fig. 3).
With respect to the 2-aryl-2-oxocarboxylic acid partner, we observed
moderate to good yields of the desired products, which represent an
important skeleton in a variety of bioactive molecules!!. 2-Oxo-2-
phenyl-acetic acids bearing both electron-donating and electron-
withdrawing substituents on the phenyl ring are suitable substrates
(3a-3ab). Relatively lower yields were observed when an electron-
withdrawing group was attached to the phenyl ring (3r-u), which
could be ascribed to the reduced reductive quenching ability toward
the photoexcited photocatalyst. Notably, 2-aryl-2-oxocarboxylic
acids with synthetic handles, such as halides, were readily
incorporated into the products (3t-u), which highlights the potential
for the incorporation of these scaffolds into more complex targets.
Evaluation of substrates containing reactive groups, such as the
chemically and biologically abundant amide and ester, provided the
corresponding products in moderate yield (3x-3z). The starting
material, bearing an easily-oxidized thioether, is also tolerated in this
system, furnishing the desired product 3aa in moderate yield. In
addition, 2-naphthyl- and 1-fluorene-substituted glyoxylic acids are
both suitable substrates, albeit in slightly lower yield (3ac-3ad). The
reactive benzylic C-H bonds in the starting material, or in the
corresponding product 3ad, remain intact under the reaction

4 | (2022)13:1858 | https://doi.org/10.1038/s41467-022-29556-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

1 mol% Ir[dF(CF3)ppylo(phen)PFg o
120 mol% KyHPO,4

o] H
OH
H

DCM (0.025 M), H,0 (20 equiv.)

NSNS

2s, 46%

@WGH%

from Adamantanol

2t, 58%

2v, 47%

© blue LEDs, 1, 24h i
1 atm 1,4-diketone
o Me O o o o} o
©)J\/\o @M Me\©)J\/\O /@)J\/\O /@)\/\O /@)J\/\o
Me Et nPr
2a, 79% 2b, 45% 2c, 66% 2d, 69% 2e, 66% 2f, 63%
o] o [¢] [¢] o o
nBu/@)J\/\O IBU/@)J\/\Q ipr/©)‘\/\o tBu/@)\/\o Cy/©)‘\/\o Pho/@)J\/xo
29, 77% 2h, 63% 2i, 50% 2j, 57% 2k, 60% 21, 44%
(jo“‘o
2m 68% 2n, 51% 20,66% 2p, 43% 2q, 56% 2r,50%

odwod% V@M Eﬁv@#

unsuccessful examples

Wﬁ*ﬁ*ﬁ*ﬁ*

2u, 59%

I

from L-Menthol

e

2w, 51%

[T

Fig. 2 Substrate scope for 1,4-diketones synthesis. Standard conditions: a-Oxocarboxylic Acid (0.3 mmol), Ir[dF(CF3)ppyl>(Phen)PF¢ (0.01 equiv.), H,O
(20 equiv.) in a solution of DCM (0.025 M) under the irradiation of blue LEDs under acetylene gas for 24 h at room temperature. Isolated yield of products.
dF(CF3)ppy, 3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyllphenyl; phen, o-Phenanthroline; DCM, Dichloromethane; equiv., equivalent.

conditions. The simple benzoylformic acid was transformed to the
corresponding product 3ae in 69% yield. Moreover, the menthol-
derived a-oxocarboxylic acid and 2-adamantanol-derived a-
oxocarboxylic acid reacted smoothly under the standard conditions
to furnish the desired compounds 3af and 3ag in moderate yield.
These results show the potential for the structural modification of an
array of bioactive molecules.

Considering the experimental results above and the require-
ments for construction of other heterocycle-containing com-
pounds as well as the extension of this approach, some
hydrocarbons, especially, heterocycles instead of tetrahydrofuran
were subsequently tested (Fig. 4). It was found that this strategy
could also be adapted for use with other five-membered
heterocycle-based hydrogen donors (Fig. 4a). When substituted
tetrahydrofuran was examined, the regioisomers 4 and 4’ were
provided in moderate yield with a 4/1 ratio. N-Boc pyrrolidine
reacted smoothly to furnish the corresponding compound 5 in
31% yield. Moreover, tetrahydrothiophene provided the desired
compound 6 under similar conditions in 30% yield. These results
suggest that the weak C-H bonds adjacent to heteroatoms in the
five-membered heterocycles could be directly functionalized with
acetylene using our system. However, the less reactive cyclopen-
tane (a five-membered carbocycle) could not serve as the
hydrogen donor to provide the desired product 7. In addition
to five-membered heterocycles, we also examined the feasibility of

other heterocycles with different ring sizes (Fig. 4b). The
experiments showed that the three-membered cyclic ether, 1,2-
epoxypropane, could not be glued with acetylene to the carbonyl
group for the formation of 8 or 8, which might be attributed to
the epoxides easily opened ring. To our delight, the four-
membered cyclic ether, oxetane, was successfully connected with
acetylene, furnishing the desired ketone 9 in 26% yield,
accompanied by 19% yield of 2a. As shown in Fig. 3, THF, a
five-membered cyclic ether, gave a good result with 69% yield of
3ae. When the ring size was further increased from five to six, the
corresponding ketone 10 tethering with tetrahydropyran (six-
membered cyclic ether) could be isolated as well, but with a lower
yield (17%). However, no desired product 11 could be detected
when the seven-membered cyclic ether, oxepane, was used as the
substrate. It seems that the larger membered heterocycles (over
six members) are not suitable partners. Linear ether (isopropyl
ether) failed to provide the desired product 12, which is in line
with the trend demonstrated in Fig. 4b. Interestingly, connecting
1,3-dioxolane with the carbonyl group was possible, giving
regioisomers 13 and 13’ in a reasonable yield with a 5/1 ratio
(Fig. 4c). The observed regioselectivity of H-abstraction in 1,3-
dioxolane may be attributed to the anomeric lowering of the C-H
BDE®? (BDE(c )= 86.8 Kcal/mol vs BDEgc.ip = 88.2 Kcal/
mol®). After deprotection, 1,4-ketoaldehyde 14 was obtained
efficiently from the crude regioisomers. Similar regioisomers 15
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Fig. 3 Substrate scope for synthesis of tetrahydrofuran-containing molecules with acetylene. Standard conditions: a-Oxocarboxylic Acid (0.3 mmol),
Ir[dF(CF3)ppyl,(Phen)PFg (0.01 equiv.), H,O (20 equiv.), MeOH (20 equiv.) in a solution of THF (0.025 M) under the irradiation of blue LEDs under
acetylene gas balloon for 24 h at room temperature. Isolated yield of products. dF(CF3)ppy, 3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyllphenyl; phen,

o-Phenanthroline; THF, tetrahydrofuran.

and 15/, which are an ideal precursor of unsymmetric 1,4-
diketones, were also obtained by switching from 1,3-dioxolane to
2-methyl-1,3-dioxolane. These outcomes illustrate that unsym-
metric 1,4-dicarbonyl compounds could be accessed by using
acetylene as a carbon glue, which greatly expands the synthetic
scope of 1,4-dicarbonyl compounds. Compared to Knowles’
strategy>®, our protocol utilized the vinyl radical generated in situ,
to activate the weak Csp3-H bond of heterocycles avoiding the
need for the additional abstractor and the preparation of the
corresponding vinyl ketones as substrates. Our strategy provides
alternative access to this type of compound from abundant
feedstock under mild conditions.

To illustrate the synthetic utility of our strategy, a series of
experiments were conducted (Fig. 5). On a preparative scale, 1,4-
diketone 2q was isolated in 60% yield, which was slightly higher
than that of the 0.3 mmol scale, suggesting that large-scale
production might be feasible. Synthesis of enantiomerically
enriched Ombitasvir 1933, an orally bioavailable and potent
inhibitor, was achieved using chiral 18 which was prepared in
4 steps from 2q via sequential asymmetric reduction, methane-
sulfonation, nucleophilic cyclization3? and coupling steps (73%
yield for 4 steps, dr 5/1) (Fig. 5a). Moreover, simple transforma-
tions of the 1,4-dicarbonyl moiety afforded a range of
synthetically useful scaffolds (Fig. 5b). For instance, heterocyclic

molecules, such as substituted furan 20, substituted thiophene 21
and substituted pyrroles 22-23 were obtained via the cyclization
of 2a under acidic condition or in the presence of Lawesson’s
reagent, ammonijum acetate or benzylamine. The 1,4-dicarbonyl
compound was easily transformed to naphthalene-2,3-diylbi-
s(phenylmethanone) 24 in 98% yield under basic conditions with
o-phthalaldehyde. Additionally, alkene 25 was accessed through a
Wittig reaction with methyltriphenylphosphonium bromide. The
derived 1,3-butadiene 26 was also obtained through a sequential
reduction and elimination processes. Furthermore, the 1,4-
dicarbonyl compound 2a was transformed to cyclobutene 27 in
good yield according to the known literature®!.

Mechanistic studies. To further gain mechanistic insights, control
experiments were performed (Fig. 6). In the presence of the radical
trap TEMPO, the reaction completely shut down (Fig. 6a, top),
indicating that a radical intermediate might be involved in this
transformation. The reaction of la was performed for 2h under
standard conditions, affording 2a in 24% yield (Fig. 6a, bottom).
Additionally, no change in the yield of 2a was observed when the
same reaction was conducted for 2 h and then for an additional 22 h
without light (Fig. 6a, bottom). These experiments indicate that the
reaction is a visible-light photocatalysis process. Considering ben-
zaldehyde was detected as a by-product during the reaction
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c Attempt to synthesize unsymmetric 1,4-ketoaldehyde and 1,4-diketone
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Fig. 4 Exploration of different cyclic molecules with acetylene. a Exploration of different five-membered heterocycles and cyclopentane. 2-Me-THF was
used as solvent for 4 and 4'. N-Boc pyrrolidine (5 equivalent) and 1,2-dichloroethane (solvent) were used for 5. Tetrahydrothiophene (5 equivalent) and
acetonitrile (solvent) were used for 6. Cyclopentane was used as solvent for 7. dF(CF3)ppy, 3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyllphenyl; phen, o-
Phenanthroline; DCE, 1,2-Dichloroethane; eq, equivalent; 2-Me THF, 2-Methyltetrahydrofuran. b Exploration of molecules with different ring size. All the
heterocycles were used as solvent or cosolvent, see supplementary information for details. € Attempt to synthesize unsymmetric 1,4-ketoaldehyde and 1,4-

diketone. The heterocycles were used as solvent.

condition optimizations, we explored the reaction of 1d and ben-
zaldehyde under the standard conditions (Fig. 6b, top) to verify
whether benzaldehyde was the reaction intermediate. No cross-over
product 28 was observed, strongly suggesting that benzaldehyde is
not likely an intermediate of this transformation. According to our
initial assumption and the inherent reactivity of the vinyl radical,
direct abstraction of a hydrogen atom from hydrogen donors to
produce the vinyl phenyl ketone is reasonable. As a result, the
reaction of stoichiometric vinyl phenyl ketone 29 and 2-(4-
methylphenyl)-2-oxoacetic acid 1d was performed under the stan-
dard conditions without acetylene, affording the expected product
28 in 26% yield (Fig. 6b, bottom). The result showed that the cor-
responding vinyl phenyl ketone is the key intermediate in our sys-
tem. To get further insight into the hydrogen source, chloroform-d
was used as the solvent instead of dichloromethane in the reaction
of vinyl phenyl ketone 29 and 2-(4-methylphenyl)-2-oxoacetic acid

1d (Fig. 6c, top) and furnished 28 in 64% yield with 0%
D-incorporation in the a-position of the carbonyl group according
to 'H NMR analysis. In sharp contrast to this phenomenon, > 90%
D was incorporated into the molecule 30a when dichloromethane-
d2 was used in the model reaction (Fig. 6¢, entry 1), indicating one
of the hydrogens next to the carbonyl group comes from the solvent.
When the corresponding potassium salt of benzoylformic acid laa
was tested under the standard conditions using dichloromethane-d2
as the solvent and D,O as an additive, the corresponding product
31a bearing > 90% D-incorporation in each methylene site was
isolated without 30a being detected (Fig. 6¢, entry 2). Additionally, >
90% D-incorporation was verified in one of the methylene sites
using D,O as the additive (Fig. 6c, entry 3), meaning another
hydrogen adjacent to the carbonyl group originates from water. To
further exclude that the deuterated product was generated from 2a
under standard conditions through H/D exchange with D,0, 2a was
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a Synthetic application of 1,4-diketone
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Fig. 5 Application potentials in the syntheses of bioactive molecules and transformations. a The 1,4-diketone 2q could be prepared in gram-scale with no
decrease in isolated yield. The approved drug Ombitasvir could be efficiently constructed with our strategy. DCM, Dichloromethane. MsCl, Methanesulfonyl
chloride. DMF, N,N-Dimethylformanide. TFA, Trifluoroacetic acid. HOBT, 1-Hydroxybenzotriazole hydrate. EDCI, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide
hydrochloride. NMM, N-methylmorpholine. b diverse high-valued compounds could be prepared from 1,4-diketone 2a.

subjected to reaction conditions with D,O instead of H,0
(Figure 6¢, entry 4). Interestingly, no deuterated products 30a or
31a were found with the 96% recovery of 2a. This experiment
suggested that the CH, of 2a cannot be deuterated through H/D
exchange with D,O under standard conditions. Taken together,
these results demonstrated the water and solvent are both hydro-
gen sources but used in the different stages of the reaction process.
This is further supported by the mechanistic experiments for 3ae
(see Supplementary Fig. 6 and Supplementary Fig. 7).

Mechanistic proposal. Based on the previously reported
literature>*>>62-66 and the aforementioned mechanistic studies, a
plausible mechanism for this transformation is proposed in Fig. 7.
Upon irradiation with visible light, the photocatalyst Ir[dF(CF;)
ppyl2(phen)PF¢ I is known to access the highly oxidizing excited
state (ES) species IT ([Ir3*]*), Which could be reductively
quenched by the anion of a-oxocarboxylic acid 1 to generate an
acyl radical 32629 through a decarboxylative pathway, and the
reduced species III. The generated 32 could be captured by
acetylene gas to afford vinyl radical species 33 which is highly

8

unstable and quickly abstracts a hydrogen from dichloromethane
to provide the electron-deficient vinyl ketone 34 accompanied by
the generation of 35. This proposed process is in line with the fact
that the BDE of the Csp?>-H bond (~110 kcal/mol)>*>> exceeds
that of Csp3-H bond of dichloromethane (~95 Kcal/mol)®®. The
reduced species III could be oxidized to regenerate the photo-
catalyst I by 35, furnishing the carbon anion 36 which could be
protonated to regenerate dichloromethane. Subsequently a Giese
radical addition reaction occurs with another molecule of acyl
radical 32, which adds quickly to alkene 34 to produce a new
carbon radical 37. Then a single-electron reduction of radical 37
by III affords the carbon anion 38 and regenerates the photo-
catalyst I. The desired product is obtained after protonation of 38.
The phenomenon that nearly no electron-deficient alkene 34 was
observed could be attributed to the fact that 34 is more highly
reactive than the parent acetylene. Similarly, vinyl radical species
33 could also abstract hydrogen from heterocycles bearing weaker
C-H bonds, affording alkene 34 and nucleophilic radical inter-
mediate 39 which is rapidly captured by 34 to produce 40. Then
the sequential single electron transfer (SET)/protonation process
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H
(o} 0}
Ph)J\H/OH + % standard conditions _ Bh )WPh
4 H TEMPO (1.2 equiv.) J
1a 1 atm 2a,n.d.
0 H Conditions A: 0
OH / standard conditions, 2 h= Ph
Ph Conditions B: Ph
o H standard conditions,2 h 0
1a 1atm  then 22 h without light ~ 2a, 24% NMR yield (Conditions A)
2a, 24% NMR yield (Conditions B)
b Exploration of intermediate involved
o H
OH Ph
+ )]\ + / standard conditions
o Ph H > o
Me H Me
1d 1 atm 28, n.d.
o]
OH Q 3 Ph
+ )]\/ standard Cond/tlons=
o Ph N, o
Me Me
M2 ... 282%yed
¢ Exploration of hydrogen source
OH o Ph
oo _~ _Standard conditions _
Me o CDClj3 (0.025 M), N, Me o
1d 29 28, 64% yield
0% D-incorporation
o H
O H D
)J\[(OM / standard conditions Q@ H D
Ph + > Ph + Ph
o Ph Ph
o HH o H D
1TaM=H  qg ©
laaM=K o 30a 31a
entry substrate variation from the standard conditions 30a 31a
14 1a CD,Cls, instead of DCM 51% (>90% D) /
24 1aa D,0O, CD,Cly, instead of H,O and DCM / 70% (>90% D)
34 1aa D,0, instead of H,O 75% (>90% D) /
4b 2a D,0, instead of H,0O / /
a Yield was determined by "H NMR with mesithlene as internal standard, D% was determined through "H NMR;
b96% recovery of 2a.

Fig. 6 Mechanistic studies. a Radical trapping and light-on-off experiment were performed, suggesting this transformation might proceed via a radical
pathway. TEMPO, 2,2,6,6-tetramethylpiperidinooxy. b Exploration of intermediate involved. n.d., not detected. ¢ Exploration of hydrogen source. Both the
solvent and water are the hydrogen source of this transformation. DCM, Dichloromethane.

occurs to provide the final product 3. It is noteworthy that
dichloromethane functions as solvent, as hydrogen donor, and as
oxidant precursor to facilitate the regeneration of the reduced
photocatalyst. In addition to serving as hydrogen donors and
solvents (special conditions), heterocycles also work as the
nucleophilic components due to the higher nucleophilicity of
their corresponding radicals over that of 35.

In summary, a diverse synthesis protocol for C2-linked
functionalized molecules with gaseous acetylene was developed,
which provided an efficient method to quickly access a variety of
compounds through connecting two components together via a
molecular glue strategy with readily available substrates and

abundant acetylene gas under mild conditions. A series of 1,4-
diketones, which are important precursors of an array of
heterocycles, were quickly constructed. Importantly, the reaction
system was expanded to construct heterocycle-containing com-
pounds. These compounds form when the intermediate vinyl
ketone is intercepted by a radical intermediate formed from a
heterocycle C-H abstraction. In both of these transformations,
acetylene is incorporated in the final product as a CH,-CH,
bridge. Additionally, mechanistic studies demonstrated that one
of the formed C-H bonds is created via a C-H abstraction from
the hydrogen donor, such as dichloromethane or a heterocycle,
and the other via protonation from water or methanol. Moreover,
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Fig. 7 A plausible mechanism. The catalytic cycle begins with oxidative single electron transfer (SET), generating the acyl radical 32. The intermediate then
undergoes addition to acetylene to generate vinyl radical 33. Intermolecular hydrogen atom transfer (HAT) then occurs to afford aryl vinyl ketone 34
accompanied by the generation of 35 or 39. At last, the Giese radical reaction between aryl vinyl ketone and another acyl radical 32 or 39 occur to furnish

the final product.

this approach provides ready access to interesting, functionalized
molecules and expands the utility of acetylene in organic
synthesis, which will inspire new perspectives for value-added
chemical synthesis using acetylene and promote the renaissance
of catalytic transformations for acetylene.

Methods

Materials. Unless otherwise noted, all the materials were obtained commercially
and used without further purification. All the solvents were treated according to
general methods. Flash column chromatography was performed over silica gel
(300-400 mesh). See Supplementary Methods for experimental details.

General procedure A for the synthesis of 1,4-dicarbonyl compounds. To an
oven-dried 25 mL flask, Ir[dF(CF;)ppy],(phen)PFs (0.003 mmol), 2-aryl-2-
oxocarboxylic acid (0.3 mmol), K,HPO, (0.36 mmol), H,O (20 equiv.) and DCM
(12 mL) were added sequentially under N,. The flask was degassed through three
freeze-pump-thaw cycles under acetylene and then an acetylene gas balloon was
attached through a long syringe needle. The reaction mixture was irradiated by
12 W blue LEDs at a distance of 5 cm for 24 h at room temperature. The reaction
mixture was filtered through a short pad of silica using ethyl acetate. The filtrate
was concentrated in vacuo before it was purified by flash chromatography on silica
gel to afford the desired product.

General procedure B for the synthesis of heterocycle-containing compounds.
To an oven-dried 25 mL flask, Ir[dF(CF;)ppy].(phen)PFg (0.003 mmol), 2-aryl-2-
oxocarboxylic acid (0.3 mmol), K,HPO, (0.36 mmol), H,O/MeOH (1/1, 40 equiv.)
and THF (12 mL) were added sequentially under N,. The flask was degassed
through three freeze-pump-thaw cycles under acetylene and then an acetylene gas
balloon was attached through a long syringe needle. The reaction mixture was
irradiated by 12 W blue LEDs at a distance of 5 cm for 24 h at room temperature.
The reaction mixture was filtered through a short pad of silica using ethyl acetate.
The filtrate was concentrated in vacuo before it was purified by flash chromato-
graphy on silica gel to afford the desired product.

Data availability
The authors declare that data relating to the characterization of materials and products,
general methods, optimization studies, experimental procedures, mechanistic studies,

HRMS data and NMR spectra are available within the article and the Supplementary
Information.
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Hydrogen radical-shuttle (HRS)-enabled
photoredox synthesis of indanones via
decarboxylative annulation

Bo Yang® "2, Shi-Jun Li® 3, Yongdong Wang® 2%, Yu Lan® 3“* & Shifa Zhu® 1™

Hydrogen atom transfer (HAT) process is a powerful and effective strategy for activating C-H
bonds followed by further functionalization. Intramolecular 1,n (n=>5 or 6)-HATs are com-
mon and frequently encountered in organic synthesis. However, intramolecular ,n (n=2 or
3)-HAT is very challenging due to slow kinetics. Compared to proton-shuttle process, which
is well established for organic synthesis, hydrogen radical-shuttle (HRS) is unexplored. In this
work, a HRS-enabled decarboxylative annulation of carbonyl compounds via photoredox
catalysis for the synthesis of indanones is developed. This protocol features broad substrate
scope, excellent functional group tolerance, internal hydrogen radical transfer, atom- and
step-economy. Critical to the success of this process is the introduction of water, acting as
both HRS and hydrogen source, which was demonstrated by mechanistic experiments and
density functional theory (DFT) calculations. Importantly, this mechanistically distinctive
HAT provides a complement to that of typical proton-shuttle-promoted, representing a
breakthrough in hydrogen radical transfer, especially in the inherently challenging 1,2- or 1,3-
HAT.
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s a powerful and effective strategy, hydrogen atom

transfer (HAT) catalysis has been demonstrated as an

ideal platform for C-H bonds functionalizations, majorly
involving proton shift and hydrogen radical transfer!~12. When it
comes to proton transfer, proton-shuttle (PS) catalysis has been
well developed for the past decades, providing a highly efficient
strategy for C-H functionalization, especially in transition-metal-
catalyzed C-H activation!3-1> and insertion of carbenes into
heteroatom-hydrogen bonds'®-24 (Fig. 1a). It has been recog-
nized that PS catalysts, such as water!®, acid!®» 17-23 and
alcohol?*, could lower the reaction barrier by forming cyclic
molecular complexes that involve lower ring strain and facilitate
intra- or intermolecular HAT. In the latter process (hydrogen
radical transfer), a reactive radical species, traditionally, was
needed to abstract hydrogen from C-H bond to generate the
corresponding carbon-centered radical intermediate®-8: 11> 25-28,
triggering the following functionalization process. Based on the
great achievements in PS catalysis, we wondered whether a
similar hydrogen radical-shuttle (HRS) strategy could be used to
complete the HAT process (Fig. 1b). Notably, the core difference
between HRS-promoted HAT and that of polarity-reversal-
catalyzed?® 30 is that hydrogen radical transfer occurs from a
neutral position to another non-radical site. To the best of our
knowledge, no successful examples utilizing this strategy have
been reported. Importantly, this would be another com-
plementary process to that of PS catalysis. With this HRS strategy
in mind, we engaged to develop practical approaches for
important scaffolds synthesis via a radical pathway.

a Proton-shuttle catalysis (PS): well-known

A ) .
L)
9o Lb o'

(PS)

Considering the prevalence of indanones and their derivatives
in pharmaceuticals and biologically active natural products3!-3°,
a lot of efforts have been devoted to developing effective strategies
for indanones synthesis3¢-40. Traditionally, indanones were pre-
pared from the corresponding indenols or indenones. Among a
variety of approaches, transition-metal catalyzed annulation of
ortho-halogenated carbonyl compounds and alkynes is one of the
highly efficient and general strategies to construct indenone
scaffolds*!-4>. For example, Yamamoto*® and Cheng®> 48
reported the cyclization of ortho-halogenated carbonyl com-
pounds and alkynes to construct indenols, respectively. Kong*’
reported the indanones synthesis based on hydrogen auto-
transfer strategy through nickel catalysis. Notwithstanding great
achievements that have been made, these methods typically suf-
fered from the prefunctionalization of the corresponding starting
materials. Direct C-H bond functionalization to access indenones
through Rh-catalyzed procedures has also been developed>0->2,
However, among these traditional strategies, a stepwise process
has to be adopted because additional oxidation and/or reduction
processes are often required when converting the indenols or
indenones to indanones (Fig. 1c). Therefore, developing a direct
C-H annulation of carbonyl compounds with alkynes for inda-
nones synthesis in one step is highly appealing and desirable.

Recently, aryl Csp?>-H functionalization involving a radical
process has emerged as an ideal and powerful strategy to con-
struct C-C bonds, along with diminished cost and waste®3 >4,
These methods rely on certain carbon radicals trapped by arenes
and followed by the aromatization process, which might provide

b Hydrogen radical-shuttle catalysis (HRS): unknown

do

iwz;g

hydrogen radical-shuttle

¢ Previous strategies for the synthesis of indanones ( stepW|se

0} R! o
e [Rh. [Col. [Pd] or [Ni]_ R! or R Mo »
[0] and [H,]
R2 R2
X =Br, |, H |ndenol |ndenone indanone
R =H, NR;, CO;Me oxidative aromatization f

d This work: HRS strategy (one step)

i Challenges:

i+ Direct addition of radical to alkyne is kinetically slow
. * The generated vinyl radical is highly reactive

!« Intermediate A is prone to form indenone through

! oxidative aromatization

* Direct 1,2- or 1,3-HAT is extremely challenging

undesired side reaction

o} o 8
R THRSZ @ Nre,ne
+ || R or R'|—— R

<—HRS
Sy

R2
B indanone

Features:

» Merger of photocatalysis with HAT

* Forbidden internal HAT process enabled by HRS

* No need for prefunctionalization of starting material

* Step-economy (one step)

+ Synthesis of natural products and bioactive molecules

Fig. 1 Proton/hydrogen radical-shuttle catalysis and indanone scaffold synthetic strategy. a Proton-shuttle catalysis model. b Hydrogen radical-shuttle
catalysis model. ¢ Traditional synthetic strategies for indanones by annulation reaction of alkynes. d HRS-enabled strategy for indanone synthesis (this

work). PC photocatalyst.
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an alternative protocol for the direct annulation of carbonyl
compounds to construct indanones. In addition, acyl radicals
produced efficiently from a-oxocarboxylic acid, aldehyde, acyl
halide, and so on via radical pathway>>, have been well researched
with alkenes. Inspired by these developments, we anticipated that
if we could utilize the electron-deficient vinyl radicals, generated
from acyl radical addition to alkynes, to achieve direct con-
struction of indanones through the dearomatic radical inter-
mediate A. However, the typical oxidative aromatization strategy
from intermediate A to the desired indanone product is often
problematic due to (i) the electron-deficient indenone is readily
prone to [2+ 2] cycloaddition under photoredox conditions®®
and (ii) the Giese-type reaction of acyl radical with indenone
would be the main side reaction®”. Moreover, the following
external reduction steps were also required from indenone to
indanone. To overcome these obstacles, we questioned if it is
possible to merge HAT with single electron transfer (SET),
resulting in the generation of intermediate B or C. We recognized
that such a merger might realize rearomatization of intermediate
A and avoid the generation of indenone, providing an aromati-
zation model and an ideal strategy for the direct construction of
indanones without additional prefunctionalization of substrates
and external steps. However, the direct addition of radicals to
unactivated alkynes is kinetically slow®® > and the generation of
corresponding high-energy vinyl radical intermediate is highly
reactive, which can participate in various undesirable open-shell
pathways. In addition, intermediate A is prone to form indenone
through oxidation/elimination steps. More importantly, as the
critical problem in our design, the HAT (1,2- or 1,3-HAT)
strategy forming B or C is challenging!!: ©0 61 due to the high
activation energy, which could be attributed to the increased
C-H-C/heteroatom strain. According to the analysis above, an
HRS-enabled HAT strategy, we speculated, might be an ideal
protocol to circumvent this problem (Fig. 1d). A suitable HRS
catalyst was required to modulate the reactivity of intermediate A,
thereby providing an opportunity for rearomatization and
hydrogen radical transfer of A simultaneously, furnishing the
effective synthesis of indanones.

In this work, we report an HRS-enabled decarboxylative
annulation of carbonyl compounds for the synthesis of indanones
via photocatalysis with excellent functional group tolerance,
broad substrate scope as well as an atom- and step-economy. The
key to the success of this protocol is the application of water
molecules, functioning as both solvent and HRS and promoting
the hydrogen radical transfer in formal 1,3-HAT process, which
was demonstrated by mechanistic experiments and DFT
calculations.

Results and discussion
Reaction development. From a design perspective, with ben-
zoylformic acid 1 as acyl radical precursor, we envisioned that
this HRS-promoted HAT/SET strategy could be outlined as
Fig. 2a. Irradiation of photocatalyst PC (I) with visible light
generates the long-lived excited state II, which is a strong oxidant,
capable of oxidizing 2 to form a nucleophilic acyl radical 3°7 and
a reduced state III. Meanwhile, the alkyne 4 reacts readily with
acyl radical 3 to form the vinyl radical 5. The open-shell radical 5
is expected to rapidly engage in addition to the aryl ring, gen-
erating the dearomatic radical 6. At this stage, we hoped that this
radical species 6 would undergo the critical hydrogen radical
transfer step to generate key intermediate 7 or 7’ assisted by HRS.
Single-electron reduction of radical 7 or 7’ by III to afford carbon
anion 8 or 8/, followed by protonation to afford the indanone 9.
Our initial efforts sought to evaluate different potential HRSs
which are effective for the direct assemble of indanones with

potassium 2-oxo-2-phenylacetate 10 and phenylacetylene 4 as
model substrates, along with Ir[dF(CF;)ppyl.(phen)PE4 as the
photocatalyst under N, with illumination by blue LEDs. After a
series of explorations on several potential HRS catalysts (H,O,
MeOH, EtOH, and acetic acid), to our delight, 22% vyield of
indanone was isolated with water as an additive (Fig. 2b). A trace
amount of desired indanone 9 was detected without water.

Further screening of the reaction conditions using benzoylfor-
mic acid 1 and phenylacetylene 4 as model substrates found that
the indanone 9 could be isolated in 86% yield using Ir[dF(CF;)
ppyl2(phen)PF; as the photocatalyst and water as HRS under N,
with illumination by blue LEDs at 100°C (Fig. 2c). Control
experiments revealed that the photocatalyst, visible light, and
water were all essential components for achieving the high
efficiency of this reaction (see Supplementary information for
details).

Substrate scope investigation. With the optimized conditions in
hand, we next evaluated the variations of 2-oxo-2-arylacetic acids
and alkynes that are applicable to the developed reaction (Fig. 3).
With respect to the 2-oxo-2-arylacetic acid partner, we observed
moderate to excellent yields of the desired products (11-31) with
a wide range of substrates bearing different substituents. The
methyl groups at the ortho-, meta-, and para-positions on the
phenyl ring of 2-oxo-2-arylacetic acid could be tolerated (11-13).
With respect to the meta-substituted 2-oxo-2-phenylacetic acid,
regioisomers 12 and 12" were obtained with 0.75/1rr. A range of
2-oxo-2-phenylacetic acids bearing both the electron-donating
and electron-withdrawing substituents on the phenyl ring, no
matter for 1°-, 2°-, 3°-alkyl substituents or linear, cyclic sub-
stituents, were amenable substrates (14-24). The strong electron-
withdrawing substituents decrease the conversion and yields. This
observation may be ascribed to the reduced reductive quenching
ability toward photoexcited [Ir]". The sp2-hybridized phenyl-
substituted 2-oxo-2-phenylacetic acid underwent smoothly to
give a 65% yield of indanones (25). Notably, 2-oxo-2-phenylacetic
acid with additional functionalities was also compatible with this
protocol. For example, various functional groups, such as ether,
halides, trifluoromethyl, easily-oxidized thioether, ester, and
amide remain intact to furnish the corresponding products
(26-29). In addition to substituted 2-oxo-2-phenylacetic acid-
type substrate, 2-(naphthalen-2-yl)-2-oxoacetic acid could also be
successfully converted into the desired product 30 in reasonable
yield. Interestingly, 31 and 31’ could be obtained in 83% yield
with region-selectivity (rr 1/2) from the corresponding substrates.
Having established that this transformation tolerates various 2-
oxo-2-arylacetic acid substrates, we then turned our attention
towards evaluating the scope of the alkyne components. For the
simple aromatic alkynes with alkyl or phenyl substituents, the
corresponding products (32-37) were isolated in 43-84% yields.
Evaluation of a series of alkynes that contained various functional
groups, such as fluoro, chloro, bromo, nitrile, aldehyde, ketone,
ester, acid, phenol, free amine and alcohol, provided indanones
38-48 in 43-85% yield, potentially allowing for the subsequent
orthogonal functionalization. Notably, alkynes with synthetic
handles, such as halides (38-40) and boronic ester 49, were
readily incorporated into the accessible indanone scaffolds, which
highlights their potential applications for the incorporation of
these scaffolds into more complex targets. Additionally, the
developed protocol was also tolerant of the alkyne containing
easily oxidized thioether, as demonstrated by 50, which was
isolated in 63% yield. Considering that heteroaryl-substituted
compounds are highly desirable building blocks in drug dis-
covery, we also evaluated a range of heteroaryl-substituted
alkynes that would provide access to heteroaryl-substituted
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indanones. Although these scaffolds traditionally required mul-
tistep syntheses, the developed protocol allows for the construc-
tion of heteroaryl-substituted indanones in a single step from
readily available precursors. For example, a wide range of five-
and six-membered heteroaryl alkynes, such as benzofuran, thio-
phene, indole, and pyridine-derived substrates were functiona-
lized with high efficiency (51-55). When 2-naphthyl alkyne was
subjected to the standard conditions, a reaction occurred to afford
the desired product 56 in 69% vyield. Of particular note is that
when 1,4-diethynylbenzene was subjected to the standard con-
ditions, mono-cyclization product 57 could be obtained in 20%
yield, accompanied with an equal amount of dicyclization pro-
duct 58. Dicyclization product 58 could be selectively produced in
61% vyield with 1.1/1 dr when an excess amount of acid partner
was used. Moreover, tricyclization compound 59 could be
obtained in one step under the same reaction conditions by using
1,3,5-triethynylbenzene as an alkyne component. To further
explore the scope of this reaction, other kinds of alkynes were also
tested. The silicon-substituted alkynes and methyl propiolate
were also suitable substrates to provide the titled products
(60-61). Besides the terminal alkynes, the internal alkynes,
including aromatic alkynes and alkyl alkynes, could also be suc-
cessfully transformed into 2,3-disubstituted indanones with dia-
stereometric ratios ranging from 7.2/1 to 20/1 (62-68). We also
evaluated 2-oxo-2-phenylacetic acids and aromatic alkynes both
with electron-donating substituents under standard conditions,
providing the corresponding products in 67-80% yield (69-71).
Importantly, the reaction could be reproduced on a 6 mmol scale
to provide gram quantities of 71 in an increased concentration.
There was almost no change in the chemical yield, suggesting that
large-scale chemical production might be possible. It is note-
worthy that cyclic internal alkyne, cyclooctyne, could also be

transformed to the corresponding indanone 72 in 30% yield with
3.7/1 dr.

To explore its utility for late-stage functionalization of complex
molecules, several natural products or bioactive molecules-
derived alkynes were tested for this developed reaction system.
As shown in Fig. 4, the estrone-derived alkyne could be efficiently
transformed into the indanone 73 in a 65% yield. In addition, aryl
alkyne with an ester-linked androstrone also participated in this
transformation smoothly, furnishing 74 in 75% yield. Similarly,
the corresponding alkyne derived from menthol and adamanta-
nol were both suitable alkyne partners for this protocol, affording
the desired products 75 and 76 in 85% and 77% vyield,
respectively. These results show great potential for the structural
modification of an array of complex biological molecules in
medicinal chemistry.

To further showcase the synthetic utility of this developed
strategy, we next made efforts on the synthesis of indanone-
containing natural products, biologically and pharmaceutically
molecules. For example, the 3-substituted indanone-1-one 78,
prepared using this method in 63% vyield, was the key
intermediate in the synthesis of indatraline 7992, an approved
and antidepressant drug (Fig. 5a). Moreover, synthesis of PPAR y
agonist 8493 could be achieved via oxidated dehydrogenation of
corresponding indanone 83, which was prepared in three steps
from a-oxocarboxylic acid 80 and 4 using our developed
protocol, followed by dehalogenation and a-esterification
(Fig. 5b). Importantly, pauciflorol F 87%* and isopauciflorol F
90, both are natural products and bioactive molecules, could
also be selectively assembled by using different alkynes and aryl
halides (Fig. 5¢ and d).

With the indanone scaffolds in hand, further chemical
transformations were also performed to demonstrate the potential
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Fig. 3 Exploration of substrate scope. Reactions were performed with acid (1.0 mmol), alkyne (0.5 mmol), Ir[dF(CF3)ppyl,(phen)PF¢ (1 mol%), K,HPO,
(2.4 equiv.) MeCN (19 mL) and H,O (1mL). 24 h, 100 °C, 12 W blue LEDs. Isolated yields. Regioselectivity ratio (rr) determined by 'TH NMR. 248 h.
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applications of these molecules (Fig. 6). Taking indanone 9 as an
example, the terminal alkene 91, 3-phenyl-1H-inden-1-one 92,
lactone 93, and 1-phenyl-2,3-dihydro-1H-indene 94 could be
obtained via the Wittig reaction, oxidation by 2,3-dichloro-5,6-
dicyano-1,4-benzoquinone (DDQ), Baeyer-Villiger oxidation,
and reduction by Zn/HOAc system, respectively. The methylene
group of 9 reacted with an aldehyde to give (E)-2-benzylidene-3-
phenyl-2,3-dihydro-1H-inden-1-one 95 efficiently. Particularly,
benzocycloheptenone 96 can be prepared straightforwardly via

the two-carbon ring expansion strategy with inexpensive ethylene
developed by Dong’s group®

Given that the robust efficiency observed, we next turned our
attention to a deeper exploration of the chemo- and regio-
selectivity of this water-mediated reaction by including different
type C-H bonds within various molecular probes (Fig. 7). An
initial competition between multiple aryl C-H bonds within a
single intermediate illustrates the absolute propensity for
generation of indanone 98 (98 vs. 99). This observation indicates
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vinyl radical and weaker C-H bonds outcompetes water-

that the carbonyl group plays a key role during the cyclization
mediated pathways affording the furan-derived products with

process to provide a five-membered ring product. We next tested

the competition of aryl C-H bonds and weaker Csp>-H bond
involved in the intermediate. In these cases, the HAT between

little indanones detected (101 vs. 102, 104 vs. 105, 107 vs. 108).
These phenomena not only showed obvious chemo-selectivity in

6 | (2021)12:5257 | https://doi.org/10.1038/s41467-021-25594-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

o
Ph
92, 55%
Ph o o
91, 62%
Ph
93, 96%
o
Ph standard conditions
o 86%
1
Ph
94, 94%
Ph
96

95, 85%
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to diverse compounds, such as alkene 91, indenone 92, lactone 93, 1-phenyl-2,3-dihydro-1H-indene 94, (E)-2-benzylidene-3-phenyl-2,3-dihydro-1H-inden-

1-one 95, and benzocycloheptenone 96, respectively.
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the presence of weaker C-H bonds but also deliver strong
evidence for the existence of vinyl radical. Moreover, the
deuterium substitution experiment with D,O using substrate
100 was performed and found that no deuterated benzylic
product was formed (see Supplementary Fig. 1 for details). The
result indicated that the corresponding product was formed
through an intramolecular 1,5-HAT followed by a Giese addition,
which is not a water-mediated pathway.

To better understand the detailed mechanism of the reaction, a
series of mechanistic studies were performed (Fig. 8). In the presence
of radical trap TEMPO, the reaction was completely shut down
(Fig. 8a), indicating that a radical intermediate might be involved in
this transformation. More importantly, acyl-trapped product,
2,2,6,6-tetramethylpiperidin-1-yl benzoate 109 was isolated in high
yield, further supporting the reaction proceeds through a radical
decarboxylation pathway and the intermediacy of an acyl radical.
The light-on-off experiment demonstrates the radical chain
mechanism is less likely involved (Fig. 8b). To verify if H,O was
involved in the reaction as proposed, D,0O was used and subjected to
the optimal reaction conditions, deuterated product 110 was
observed in 90% yield when D,O was utilized in place of H,O,
demonstrating the benzylic site of hydrogen is originated from water
(Fig. 8¢, top). To further test whether deuterated product 110 was
generated from the indanone 9 under standard conditions through
H/D exchange with D,0, indanone 9 was subjected to the reaction
conditions with D,0 instead of H,O (Fig. 8c, middle). Interestingly,
a deuterated indanone 111 was formed, in which only the CH, of
indanone was deuterated through H/D exchange with D,0O and no
deuterated benzylic product was formed. This experiment suggested
that the benzylic C-H cannot be deuterated through H/D exchange
with D,O under standard conditions. To verify whether the 1,5-

HAT is involved in the reaction, deuterated phenylglyoxylic acid 112
was used as substrate under standard conditions (Fig. 8c, bottom,
left). The absolute indanone 113 without deuterium transfer was
obtained in 86% yield, demonstrating that the reaction did not
proceed via 1,5-HAT pathway. In addition, it also indicated that no
obvious direct hydrogen transfer occurred from the aryl position to
the corresponding methylene and benzylic site of indanone, which is
not in line with the 1,2- and 1,3-HAT. Taken together, the hydrogen
atom of benzylic C-H of indanone should come from water during
the catalytic reaction process, neither from the aryl C-H via 1,5-
HAT nor from water through H/D exchange after reaction
completion. Kinetic isotope experiments (KIE) were also performed
to have more insight into the reaction mechanism (Fig. 8¢, bottom,
right). Since no obvious KIE effect (Kp/Ky=1/1) was detected
when the equivalent of 1 and 112 were subjected to the reaction
conditions with alkyne 4, according to the intermolecular competi-
tion experiment, aryl C-H bond cleavage was not likely the rate-
determining step. Additionally, when ketone 114 was performed
under standard conditions, no cyclized product 13 was detected but
with a recovery of 114 in 96% (Fig. 8d, top). Furthermore, when
chalcone 114 was added as an additive to the model reaction, only
the predictable indanone 9 and Giese-type reaction product 115
could be monitored (Fig. 8d, bottom). These control experiments
strongly indicated that the chalcone 114 is less likely the
intermediate involved in the reaction.

DFT calculation was subsequently employed to provide further
insight into the mechanism of this decarboxylative annulation
reaction (Fig. 9a). According to the computational calculations, an
intermolecular radical addition with phenylacetylene 4 takes place
via transition state TS1 with a free energy barrier of 23.7 kcal/mol to
afford the vinyl radical 5. Then an intramolecular radical addition
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would occur via transition state TS2 with a free energy barrier of
15.7 kcal/mol to achieve annulation and form a dearomatized
intermediate 6. Because of the similar BDE values of C-H bonds
between alkenes and arenes, we considered an alternative intramo-
lecular 1,5-hydrogen shift theoretically via transition state TS2”.
However, the relative free energy of generated phenyl radical 6” is
7.4 kcal/mol higher than that of vinyl radical 5. Moreover, the
relative free energy for the corresponding annulation transition state
TS3” is also 3.9 kcal/mol higher than that of TS2. This analysis
revealed that the generation of intermediate 6 is a favorable pathway.
These calculations were highly consistent with our experimental
observations (Fig. 8c). Next, we focused on understanding the exact
role of water in the formation of intermediate 7 or 7. When
dearomatized intermediate 6 is formed, from calculations, a water-
assisted stepwise 1,3-hydrogen transfer would provide a more stable
benzylic radical 7 with rearomatization. In this process, two water
molecules were used to achieve dehydrogenation via transition state

TS3 to afford a complex radical intermediate 116 with a free energy
barrier of only 2.4 kcal/mol (see Supplementary Fig. 9 for other
water molecules assisted pathway). Two other possible resonance
structures of intermediate 116 could be drawn as electron-neutral
indenone with hydrated hydrogen radical 116a and zwitterionic in
indenolate radical with protonated water 116b. The spin density
map of intermediate 116 clearly revealed that spin density is majorly
located at indenone moiety. Meanwhile, the electrostatic potential
map also exhibits a charge-separated character (Fig. 9b). Therefore,
zwitterionic resonance structure 116 has a more appreciable
contribution for this intermediate. Interestingly, noncovalent
interaction (NCI) analysis of intermediate 116 also revealed a
strong hydroxyl-m interaction between indenolate radical and
hydrated proton, which explained the stability of this intermediate.
When intermediate 116 is formed, a rapid protonation takes place
via transition state TS4 resulting in the formation of benzylic radical
7 with the release of two water molecules (see Supplementary Data 1
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for the coordination of all the structures involved in the
computational calculations). Therefore, as we designed, water acts
as a hydrogen radical-shuttle catalyst, promoting the favorable 1,3-
hydrogen transfer with the formation of intermediate 7.

In summary, we have developed a decarboxylative annulation for
indanones synthesis via photoredox/HAT catalysis with water as
hydrogen radical-shuttle (HRS). This protocol provides a powerful
platform to construct indanones with broad substrate scope, excellent
functional group tolerance, internal hydrogen radical transfer, atom-
and step-economy, using simple and available 2-oxo-2-phenylacetic
acids and readily available alkynes. Moreover, the exact role of water
in this developed strategy was demonstrated by mechanistic
experiments and DFT calculations, as we designed, facilitating the
hydrogen transfer and acting as the hydrogen source. Namely, acting
as a HRS catalyst was critical to the success of this process.
Additionally, the key intermediate 116 was further demonstrated by
spin density map and NCI analysis. Most importantly, to the best of
our knowledge, this system provides an aromatization model,
representing a breakthrough in hydrogen radical transfer assisted
by HRS. This hydrogen transfer is mechanistically distinctive from
that of typical PS-promoted, providing a complementary process in
hydrogen transfer and a feasible solution in achieving 1,2-, or 1,3-
HAT. We expect this strategy could be widely adopted and further
promote the development of direct functionalization of aryl Csp?-H
via HRS-assisted hydrogen transfer.

Methods

Materials. Unless otherwise noted, all the materials were obtained commercially
and used without further purification. All the solvents were treated according to
general methods. Flash column chromatography was performed over silica gel
(300-400 mesh). See Supplementary Methods for experimental details.

General procedures for the indanones synthesis. To an oven-dried 50 mL flask,
Ir[dF(CF;)ppyl.(phen)PFs (0.005 mmol), 2-aryl-2-oxocarboxylic acid (1.0 mmol)
and K,HPO, (1.2 mmol) were added sequentially under N,. The flask was evac-
uated and back-filled with N, for three times, then alkyne (0.5 mmol), H,O (1 mL),
and MeCN (19 mL) was added. The reaction mixture was irradiated by 12 W blue
LEDs at a distance of 5 cm for 24 h at 100 °C. The reaction mixture was cooled to rt
and filtered through a short pad of silica using ethyl acetate. The filtrate was
concentrated in vacuo before it was purified by flash chromatography on silica gel
to afford the desired indanone product.

Computational method. All the calculations in this study were performed using
the Gaussian 16 program package.®’ The All the geometries were optimized at the
M06-2X%8/6-31 G(d,p) and SDD for Ir level, and the solvent effect was utilized the
polarizable continuum model using integral equation formalism model (IEFPCM)
in hexane solvent.?” All the optimized stationary points had been identified as
minima (zero imaginary frequencies) and transition states (one imaginary fre-
quency), via the vibrational analysis. The solution-translational entropy correction
has been calculated with the THERMO program.”°
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Carboxylic acids and alcohols are widely commercially available, structurally diverse, benchtop stable, and
ubiquitous in both natural products and pharmaceutical agents, making them ideal coupling partners for
organic synthesis. Though various transformations have been developed by enabling the activation and
subsequent cross-coupling of carboxylic acids and alcohols in separate contexts, the direct coupling of these

two structural motifs to build value-added molecules is rare. Herein, we developed a direct deoxygenative
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catalysis. This protocol provides a powerful platform to construct a wide range of structurally diverse ketone

scaffolds with broad substrate scope, good functional group tolerance, step-economy and mild reaction
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conditions, using simple and readily available substrates. Moreover, the large-scale synthesis and late-stage

rsc.li/chemical-science functionalization of biological molecules also demonstrate the potential practicality.

Due to the prevalence of ketones in natural products and
bioactive drugs' and their central role as versatile reactants in
synthetic chemistry,” the development of powerful methods for
ketone synthesis is highly desirable. In this context, a vast
number of methods have been developed to construct ketones.
Typically, ketone synthesis most often relies upon the addition
of an organometallic reagent to an aldehyde followed by
oxidation® or more recently, the use of carboxylic acid deriva-
tives to couple with various nucleophiles (Fig. 1a).* While
significant contributions have been made to this field, these
methods typically necessitate a prefunctionalization step and
often require nonabundant starting materials, such as air- and
moisture-sensitive alkyl organometallics,**” and organoboron
and organosilicon reagents,* which are not step-economical
and might lead to issues with functional group tolerance and
waste generation, thereby limiting the reaction scope and
practicality. To address this problem, we sought to develop
a robust platform to deliver ketones utilizing easily accessible
and commercially available starting materials under mild
conditions.

Carboxylic acids and alcohols are widely commercially
available, structurally diverse, benchtop stable, relatively
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nontoxic, and ubiquitous in both natural products and phar-
maceutical agents,” making them ideal coupling partners for
organic synthesis (Fig. 1b). In recent years, a variety of trans-
formations have been developed by enabling the activation and
subsequent cross-coupling of carboxylic acids and alcohols via
metallaphotoredox catalysis in separate contexts.® The direct
coupling of these two prevalent structural motifs to build value-
added molecules is significantly rare but highly of interest.
Conventionally, alcohols and carboxylic acids are most
commonly coupled to form esters,” and fragment cross-
coupling of these two structural motifs has been explored to
a lesser extent. Recently, the efficient direct coupling of
carboxylic acids and alcohols to forge new C(sp*)-C(sp?) bonds
has been developed via an N-heterocyclic carbene (NHC)-
promoted deoxygenation process by the MacMillan group
(Fig. 1c, left).® Despite this great achievement, developing new
types of cross-coupling reactions between these two molecules
has remained an appealing yet elusive goal. Considering the
importance of ketone scaffolds, we wondered if diverse ketones
could be accessed from the direct coupling of abundant
carboxylic acids and alcohols, where acids serve as acyl elec-
trophiles, and alcohols serve as nucleophiles (Fig. 1c, right). On
this subject, Hong developed a photoinduced method for
synthesizing ketones from alcohols and carboxylic acid deriva-
tives through NHC catalysis under mild reaction conditions.®
This approach worked well for benzoic acid, but was not effec-
tive for the alkanoic acid substrates. As a consequence, devel-
oping an efficient and new catalytic methodology to convert
carboxylic acids and alcohols into dialkyl ketone scaffolds is
still highly of interest and would complement Hong's strategy.

However, direct coupling of these two structural motifs
forming ketones in a desired manner is not as easy as might be
expected due to the potential competing cleavage of two C-O
bonds in these two molecules. The main challenge for realizing
this transformation was how to selectively achieve C-O bond
cleavage in both alcohols and carboxylic acids via two distinct
mechanisms. In recent years, the combination of photoredox
and nickel catalysis has emerged as a powerful tool in chemical
bond construction,” which might provide an alternative
protocol for the ketone preparations from alcohols'®" and
acids. In such a reaction, a transition-metal catalytic unit could
engage sequentially with the acyl electrophiles formed in situ
from carboxylic acids' and radicals generated from alcohols
through oxidative addition™ and radical capture.”*»** Then the
resulting diorganonickel adduct undergoes reductive elimina-
tion to afford the desired ketone scaffolds (Fig. 1d). Neverthe-
less, to achieve this goal, other potential competing reactions,
such as the esterification reaction® and decarboxylative trans-
formation,***** which are commonly encountered under basic
and photoredox conditions, are also a big problem and need to
be avoided.

In this work, we developed a photoredox-catalyzed synthetic
protocol for diverse dialkyl ketone synthesis from naturally
abundant carboxylic acids and alcohols under mild conditions
with good functional group compatibility, and broad substrate
scope. This protocol features no protection and deprotection
steps. Given the structural diversity of carboxylic acids and

18406 | Chem. Sci, 2024, 15, 18405-18410
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alcohols, the success of this protocol could potentially enhance
the synthesis of complex ketones. More significantly, ketones
can be directly constructed from two abundant starting mate-
rials, thus expanding the existing ketone synthetic routes.

To start our investigation, the synthetic method for ketones
was explored with the commercially available carboxylic acid 1
and alcohol 2 as the model substrate (Table 1). Based on
previously reported elegant carboxylic acid activations in ketone
synthesis,®"/*>®1* Boc,0 was chosen as the activating reagent to
generate mixed anhydride in situ from carboxylic acids. After
extensive reaction condition screening (see the ESIT for details),
we were pleased to find that the corresponding ketone 3 was
obtained in 73% isolated yield using N4 as the alcohol-acti-
vating agent and Cs,CO;/K,CO; and pyridine as bases in the
presence of a catalytic amount of NiBr,DME and L1 under
visible light irradiation in DMA/1,4-dioxane using Ir(ppy)s(-
dtbbpy)PF, as the photocatalyst (entry 1). The thiazole-based
NHC reagent N1 and other simple triazole-based NHC mole-
cules N2 and N3 are ineffective in this transformation (entry 2).
These initial optimization studies revealed the importance of
NHC types for the reaction efficiency. A slightly lower yield was
obtained when tBuOMe was used instead of 1,4-dioxane (entry
3). Other solvents, such as benzotrifluoride, tetrahydrofuran
and acetonitrile were also tested and the results indicated that

a

Table 1 Optimization of reaction conditions

1 mol% PC
10 mol%NiBr,"DME, 15 mol% Ly
Cs,C03 (1.5 squlvi K2C03 (1.3 equiv.)

Ny (1.5 equw) pyndme O M
1,4-Dioxane (0.1 M), r.t., 20 min Me ©

thenBoc,O (1.3 equiv.), 450-455 nm LEDs rt. 3

wm

NHC additives

Ph : N N

Q_Q CD JriaRes L

! tBu
Ny N 3 Ny, Bu

7
PC: Ir(ppy) (dtbpy)PFg

Entry Variation from optimized conditions Yield” (%)

1 None 5(73)

2 N, N,, and Nj; instead of N, 0, trace, 0

3 BuOMe instead of 1,4-dioxane 60

4 PhCF, THF, and MeCN instead of 1,4-dioxane 54, 13, <10

5 L,, L3, Ly, and L; instead of L, 37, 32, 30, trace
6 5 mol% NiBr,-DME, 7.5 mol% L1 78 (75)

7 No light irradiation 0

8 No NHC 0

9 No PC

o 90 b o £

“ Reaction conditions: 1 (0.3 mmol), 2 (0.42 mmol), 1 mol%
Ir(ppy)2(dtbbpy)PFs, 10 mol% NiBr,-DME, 15 mol% L;, Cs,CO; (0.45
mmol), K,CO; (1.3 equiv.), DMA (3 mL), N4 (1.5 mmol), pyridine (1.4
equlv) 1,4-dioxane (3 mL), Boc,O (1. 3 equiv.), 450-455 nm LEDs.

b Yields of 3 were determined by 'H NMR spectroscopy with
mesitylene as an internal standard and the isolated yield is shown in
parentheses. r.t., room temperature; NHC, N-heterocyclic carbene;
DME, 1,2-dimethoxyethane; DMA, N,N-dimethylacetamide.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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1,4-dioxane was more suitable for this transformation (entry 4).
Screening of a range of ligands revealed that acylation product 3
could also be generated, albeit in diminished yields (entry 5). A
slight increase in the yield was observed on reducing the
amount of NiBr,-DME and L1 (entry 6). Light irradiation was
essential for this transformation as it did not progress under
dark conditions (entry 7). Further control experiments showed
that NHC and the photocatalyst were indispensable in this
transformation (entries 8-9). It was worth noting that the side
products due to decarboxylation and esterification could be
detected.

With the optimized reaction conditions in hand, we then
investigated the scope of carboxylic acids and alcohols (Fig. 2).
We first probed the ability of various aliphatic acids for cross-
coupling in our system (3-22). Substituted phenyl propionic
acid and butyric acid derivatives yielded desired products in
moderate to good yields (3-10). A range of aliphatic acids,
including linear and cyclic acids, were amenable substrates,
providing the cross-coupling products in good to excellent
yields (11-18). Notably, carboxylic acids with additional func-
tionalities were also compatible with this protocol. For example,
various functional groups, such as alkyl chloride, ester, pro-
tected amine and ketone remain intact to furnish the

1 mol% Ir(ppy)s(dtbbpy)PFg
10 mol%NiBra*DME, 15 mol% Ly
o o Cs,CO; (1.5 equiv.), K,CO; (1.3 equiv.)
o, OH
R%H @ Na (15 equiv), pyridne
1,4-Dioxane (0.1 M), r.t., 20
then Boc;0 (1.3 equiv.), 450-455 nm LEDs, r.t

Iv(ODV)zLd\bbpylPFg

Scope of

o Me l Me
([ @ @
J Tk e

MeO
3,75% 4,60% 5,45% 6.62%

Ph S o Me  MeO. ) Me  Me Me Ci
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Me Me
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g
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Limitation of ic acids
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Fig. 2 Substrate scope for ketone synthesis. Standard conditions:
carboxylic acid (0.3 mmol), alcohol (0.42 mmol), 1 mol% Ir(ppy)a(-
dtbbpy)PFg, 10 mol% NiBr,-DME, 15 mol% L1, Cs,COz (0.45 mmol),
K>COs3 (1.3 equiv.), DMA (3 mL), N4 (1.5 mmol), pyridine (1.4 equiv.), 1,4-
dioxane (3 mL), Boc,O (1.3 equiv.), 450-455 nm LEDs. Isolated yield.
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corresponding cross-coupling products, potentially allowing for
the subsequent orthogonal functionalization (15-19). In
particular, carboxylic acids with synthetic handles, such as
halide (10 and 15), were readily incorporated into the accessible
ketone scaffolds, which highlights the potential applications for
the incorporation of these scaffolds into more complex targets.
Products derived from alkenyl acids were also tolerated, as
demonstrated by B,B-dimethylacrylic acid (20) and lineoic acid
(21). These results show the great potential for structural
modification and resource utilization of naturally existing
carboxylic acids. Heterocycle-containing carboxylic acid reacted
smoothly in this system, affording the deoxygenated cross-
coupling product in moderate yield (22). Of particular note is
that substituted phenyl acetic acid and hindered carboxylic
acids (23), such as N-Boc proline (24) and 2-phenyl propionic
acid (25) were not suitable for this transformation, yielding no
product. Additionally, experiments with various benzoic acid
derivatives were also performed under the standard conditions.
Unfortunately, these substrates were not compatible with our
system (26-27). This phenomenon could be attributed to the
diminished reactivity in carboxylic acid activation.

Having established that this transformation tolerates various
carboxylic acids, we turned our attention towards evaluating the
scope of alcohol components. Consistent with our expectation,
we were pleased to find that a wide variety of primary alcohols
were successfully applied in this protocol, furnishing the
desired ketones in moderate yields (28-32). The instability of
the corresponding alkyl radicals originating from alcohols
could be responsible for the relatively lower yield (29-32). Of
particular note is that the developed protocol was also tolerant
of the alcohol containing protected amine, as demonstrated by
31, which was isolated in 40% yield. Notably, the alkene-
retained product (32) was obtained in 39% yield, while intra-
molecular radical cyclization was not observed. This result
suggests the faster capture of the alkyl radical than 5-endo-trig
cyclizations under the specific reaction conditions. Secondary
alcohols, especially cyclic alcohols, ranging from four- to seven-
membered rings, were found to be viable coupling partners,
successfully delivering the corresponding products in 40-61%
yields (33-38). It is noteworthy that sterically encumbered
polycyclic alcohols, such as 2-adamantanol, were employed
without an appreciable decrease in the reaction efficiency (37). A
relatively increased yield was obtained when benzyl alcohols
were used, which is in line with the stability of the corre-
sponding radical intermediates from alcohols (38-41). With
these positive results in hand, we finally tested the feasibility of
tertiary alcohols, such as 1-methylcyclohexanol and tert-
butanol, and the experimental results indicated that no corre-
sponding cross-coupling product could be observed (42-43).

Given the exceptionally mild and simple conditions, we
sought to demonstrate the utility of this operationally conve-
nient method in the late-stage functionalization of complex
molecules. As shown in Fig. 3, the oxaprozin analogue 44 could
be generated efficiently with our strategy in 55% yield. Lith-
ocholic acid analogues could also underwent smoothly,
providing the deoxygenative ketone in 60% and 62% yield,
respectively (45 and 46). With stearic acid as an acyl donor, the
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Boc,O (1.3 equiv.), 450-455 nm LEDs. Isolated yield.

transformation proceeded efficiently, yielding 47 in 75% yield. A
naturally occurring steroid was also successfully employed and
afforded the corresponding product 48 in moderate yield.
Bronchodilator proxyphylline showed good reactivity to deliver
the product 49 in 21% yield. These results show great potential
for the structural modification of an array of complex biological
molecules, especially in medicinal chemistry.

To further showcase the synthetic utility of this developed
strategy, a large-scale experiment was conducted, providing the
desired ketone 3 in 71% yield (Fig. 4). There was almost no
change in the chemical yield, suggesting that large-scale
chemical production might be possible.

To gain further insight into the reaction mechanism, a series
of mechanistic studies were performed (Fig. 5). In the presence
of radical trap TEMPO, the reaction was completely shut down
(Fig. 5a), indicating that a radical intermediate might be
involved in this transformation. More importantly, a benzyl-
trapped product, 2,2,6,6-tetramethylpiperidin-1-yl benzoate 50
was observed via high resolution mass spectrometry, further
supporting that the reaction proceeds through a radical deox-
ygenative pathway and the intermediacy of a benzylic radical.
Furthermore, the generation of a benzylic radical from 2 in the
reaction also could be demonstrated by the observation of 51
when phenyl vinyl sulfone was added to the system. Addition-
ally, to further elucidate the possible reaction pathway, a radical
clock experiment was performed with cyclopropanemethanol
52 and the observation of ring-opening product 53 suggested
the involvement of a radical intermediate (Fig. 5b). In our
hypothesis, carboxylic acid is activated by Boc,0, leading to the
corresponding acyl-Ni oxidative insertion complex. The control
experiments are consistent with this hypothesis. First, when

o] Me
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standard conditions
Me Me Me Me
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Fig. 4 Large-scale synthesis.
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primary carboxylic acid 1 is treated with Boc,0O and K,COs;,
moderate conversion to the expected mixed anhydride is
observed within 3 h (Fig. 5c). In the parallel experiment using
secondary carboxylic acid 55, there is no observable formation
of the mixed anhydride 56 at the same time point, resulting in
the formation of the acyl-Ni complex being difficult. These
results are in line with the limitations of carboxylic acids shown
in Fig. 2. It is noteworthy that the desired ketone 3 could be
detected in 68% NMR yield when Ni(COD), was used in place of
NiBr,-DME (Fig. 5d), indicating the presence of Ni(0) species.
Based on the previously reported literature®**'® and the
aforementioned mechanistic studies, a plausible mechanism
for this transformation is proposed in Fig. 6. The proposed
mechanism starts with the condensation of alcohol and NHC
(Ny), providing activated alcohol 57. Upon irradiation with
visible light, the photocatalyst Ir(ppy),(dtbbpy)PF I is known to
access the highly oxidizing excited state species Il (*Ir'") (Ej5¢
» I/ = + 0.66 V vs. SCE),"” which could be reductively
quenched by the activated alcohol 57, affording aminium
radical cation 58. Then a deprotonation process occurred at the
a-position of 58, yielding radical intermediate 59. Subsequent f-
scission occurred, thus generating the key alkyl intermediate
60. The nickel catalytic cycle is initiated by the oxidative addi-
tion of the Ni(0) catalyst 62 to an in situ-activated carboxylic acid
61 formed by Boc,O under basic conditions, to afford Ni(u)
species 64. Subsequently, efficient trapping of the alkyl radical
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Fig. 6 A plausible mechanism.
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60 provides Ni(m) complex 65, which undergoes reductive
elimination to yield the desired ketone 66 and Ni(i) complex 63.
Finally, the single electron transfer between Ni(1) species 63 and
reduced photocatalyst III (Ir'") regenerates the ground-state
photocatalyst I (Ir'™) and the Ni(0) catalyst, completing both
catalytic cycles.

Conclusions

In summary, we have developed a direct deoxygenative cross-
coupling between carboxylic acids and alcohols for ketone
synthesis via photoredox/nickel dual catalysis under mild
conditions. This protocol provides a powerful platform to
construct a wide range of structurally diverse ketone scaffolds
with broad substrate scope, good functional group tolerance,
step-economy and mild reaction conditions, using simple and
readily available carboxylic acids and widely abundant alco-
hols as starting materials. Given the structural diversity of
carboxylic acids and alcohols, the success of this metal-
laphotoredox-catalyzed deoxygenative cross-coupling protocol
could potentially enhance the synthesis of complex ketones. In
addition, this developed method will promote the resource
utilization of naturally abundant acids and alcohols and
enhance the preparation of ketone scaffolds. The exact roles of
carboxylic acids and alcohols were demonstrated by mecha-
nistic studies, as we hypothesized, that the carboxylic acids
provide the acyl group and the alcohols afford the alkyl group.
Asymmetric transformations of carboxylic acids and alcohols
into ketones are underway in our laboratory and will be re-
ported in due course.
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There are very limited approaches to directly gluing two molecules for the production of internal alkenes using the vastly
abundant acetylene via 1,2-difunctionalization. Conversion of gaseous acetylene to internal alkenes via 1,2-difunctionalization in
a desired manner is not as easy as it might be expected due to the potential competition reactions between acetylene and alkene
produced and the difficulty in handling this harmful reagent and controlling the regio- and stereoselectivity. In this work, we
designed an efficient catalytic system for the incorporation of acetylene gas into tremendous (£)-f-bromo vinylsulfones, which
are bench-stable, easy to operate, and can function as bifunctional acetylene and show a rich reactivity profile in Sonogashira
coupling, Heck coupling, substituted reaction, and various desulfonylation transformations, providing numerous internal al-
kenes.

acetylene, 1, 2-difunctionalization, photocatalysis, vinylsulfone
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1 Introduction

Due to the rich chemistry of alkenes, the presence of an
alkenyl substituent allows a great variety of possibilities for
diversification and elaboration via functionalization. There-
fore, conventional approaches to alkenes, such as the well-
known Wittig reactions [1], alkene metathesis [2], alkyne
functionalization [3], Heck-type reactions [4], and many
others [5], have been well developed. Among these strate-
gies, direct functionalization, particularly 1,2-difunctionali-
zation of alkynes, is an attractive approach for rapidly
constructing the desired alkenes in a convenient and eco-
nomical pathway. However, alkyne 1,2-difunctionalization is
not well developed compared with alkene 1,2-difunctiona-

*Corresponding author (email: zhusf@scut.edu.cn)

© Science China Press 2024

lization. This scenario can probably be ascribed to regio- and
stereoselectivity (Scheme 1a) [6]. As the simplest alkyne,
acetylene is a vastly abundant and cheap commodity feed-
stock [7]; however, the catalytic transformations of this
harmful two-carbon unit in organic synthesis are quite lim-
ited [8]. This is, to some extent, due to the difficulty of
handling the explosive and flammable gaseous reagent,
which has historically frustrated their utilization in synthesis.
Another reason is that the broad knowledge available for
substituted alkynes is often not directly transferable to
acetylene due to its intrinsic stronger strength of the n-bonds
and higher activation energies for reactions [8d,8k]. Fur-
thermore, the instability of its possible intermediates, term-
inal vinyl radical [9,10], and especially the cation [11], has
traditionally restricted its conversion. At present, acetylene
has been employed as a feedstock for the preparation of bulk
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chemicals, such as vinyl chloride monomer, vinyl acetate,
acetaldehyde, acrylonitrile, and other products [8a]. Also, it
can take part in other transformations, such as nucleophilic
addition [8c,12], [2+n] cyclization [13,14], cross-coupling
[15], and di-/tri-/polymerization reaction [8a,8g,8h,16]. To
effectively introduce acetylene in synthesis, competing re-
actions, such as the formation of more reactive substituted
alkynes or alkenes from acetylene, need to be prevented.
Despite these developments, effective catalytic protocols to
incorporate acetylene into fine chemicals are still limited.
In fact, due to the existence of the two addressable =-
bonds, acetylene is still one of the simplest, readily func-
tionalized, and ideal two-carbon synthons. Notably, various
functionalized vinyl molecules are prepared via mono-
functionalization using acetylene [8a,81,13,17]. Never-
theless, the difunctionalization of acetylene is relatively rare
[8a—8c,18]. On this subject, we have recently developed
three radical difunctionalization protocols of acetylene
through a molecular glue strategy [8c,18b,18¢c]. However,
the focus of these protocols is on constructing single bond-
derived molecules via cascade transformation (Scheme 1b,
left). Considering our immense interest in acetylene trans-
formation [8b,8c,16¢,17d,18,19], we wondered if 1,2-di-
functionlization of acetylene involving the radical process

O“s” H
R” . Z
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could allow the rapid synthesis of double bond-derived
products, such as internal alkenes (Scheme 1b, right). With
this in mind, recently, we have designed a 1,2-difunctiona-
lization method that introduces acetylene directly into
readily available bifunctional reagents (two components)
using a photocatalyzed process [18d]. Although powerful,
this strategy has drawbacks, such as requiring pre-
functionalization of bifunctional reagents and having a lim-
ited substrate scope (O/S/Se-containing vinyl frameworks).
Thus, developing an effective catalytic methodology to in-
troduce acetylene into fine chemicals providing diverse in-
ternal alkenes via 1,2-difunctionalization is highly desirable.
However, exploiting gaseous acetylene to glue two compo-
nents forming internal alkenes via 1,2-difunctionalization in
a desired manner is not as easy as it might be expected due to
the potential competition reactions between acetylene and
alkene obtained from acetylene and the difficulty in con-
trolling the regio- and stereoselectivity (Scheme 1b) [6a]. In
particular, the high-energy vinyl radical intermediates ob-
tained from radical addition to acetylene are highly unstable,
have a short lifetime, and readily participate in different
undesirable open-shell pathways. We questioned whether an
appropriate bifunctional acetylene could give a valuable
solution to this task. We have recently aimed to develop a
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strategy to trap acetylene efficiently and convert it into a
bifunctional and practical reagent while simultaneously ex-
hibiting a rich reactivity profile. Ideally, this reagent should
be readily prepared, stable, and easy to handle. As a leaving
group, the sulfonyl moiety can controllably change the mo-
lecular polarity and activate reactive sites for further bond
construction, especially for making carbon-carbon single and
double bonds [20]. Notably, sulfone motifs are widely pre-
sent in pharmaceutical molecules because they can control
and balance the rate of drug metabolism and bio-
transformation [21]. Moreover, vinyl halides, especially vi-
nyl bromide, have appeared as versatile substrates in a
variety of chemical transformations [22]. Thus, S-bromo
vinylsulfone would be an ideal bifunctional reagent that
serves as an acetylene surrogate to connect two molecules
rather than direct utilization of acetylene. Many strategies
have been developed to access f-bromo vinylsulfone from
substituted alkynes [23], but these methods have the dis-
advantages of using peroxide at high temperatures, requiring
expensive and air-sensitive ligands/additives, and generating
significant amounts of waste, which restrict their practical
applications. Moreover, these developed approaches are
limited to using electronically biased alkynes. Thus, the
development of mild and efficient methods that introduce
acetylene into sulfone motifs and bromide is of great sig-
nificance. In this work, a general metal-free method is de-
veloped to quickly access a variety of (F)-f-bromo
vinylsulfones using acetylene under mild conditions. The
(E)-p-bromo vinylsulfones are bench-stable and can parti-
cipate in different transformation reactions, such as Sono-
gashira coupling, Heck-type coupling, substituted reactions,

Table 1 Reaction development for the preparation of S-halo Vinylsulfonesa)

and desulfonylation transformations, offering numerous in-
ternal alkenes (Scheme Ic).

2 Experimental

Experimental procedures and analytical data, nuclear mag-
netic resonance (NMR) spectra, and high-resolution mass
spectrometry data are presented in the Supporting Informa-
tion online.

3 Results and discussion

3.1 Optimization of the reaction conditions

We started the study by using sodium sulfinate 1a as the
model substrate and CH,Br, as both solvent and brominating
reagent at room temperature under blue LED irradiation
(Table 1, entry 1). To our delight, we obtained the target
compound 2a in 48% yield. A slight decrease in the yield
was observed when the concentration was increased (Table
1, entry 2), suggesting that CH,Br, might not be an efficient
brominating agent. When BrCCl; (4 mL) was added to the
reaction system, 2a was produced in a 49% isolated yield
(Table 1, entry 3). Then, we examined the amount of BrCCl,
that may affect the transformation efficiency (Table 1, entries
4-7). Gratifyingly, the yield of 2a could be greatly enhanced
to 76% when BrCCl; was reduced to 0.2 mL (4 equiv.)
(Table 1, entry 7). Further decreasing BrCCl; to 0.1 mL (2
equiv.) slightly decreased the yield to 66% (Table 1, entry 8).
Importantly, a 77% isolated yield of 2a could be accessed

H 1 mol% Photocatalyst

PhSO2Na + |[[| + Brccly
1a

CH,Br,/H,0 (19/1) (0.05 M) O\\S,,O

A

i, blue LEDs, 24 h Ph o Br

H 2a, specific
1 atm
Entry Photocatalyst CH,Br,/BrCCl; Yield (%)
1” Ir[dF(CF3)ppy]»(phen)PF, - 48
29 Ir[dF(CF3)ppy]»(phen)PF, - 36
3 Ir[dF(CF;)ppy]l,(phen)PF 6 mL/4 mL 49
4 Ir[dF(CF3)ppyl,(phen)PF 8 mL/2 mL 57
5 Ir[dF(CF;)ppy]l,(phen)PF 9mL/l mL 62
6 Ir[dF(CF;)ppyla(phen)PF, 9.5mL/0.5 mL 78
7 Ir[dF(CF;)ppy],(phen)PF 9.8 mL/0.2 mL 76
8 Ir[dF(CF;)ppyla(phen)PF, 9.9 mL/0.1 mL 66
99 4C7IPN - 77

a) Reaction conditions: sodium sulfinate 1a (0.5 mmol), photocatalyst (1 mol%), CH,Br,/BrCCl; (0.05 M), H,O (0.5 mL), acetylene atmosphere (balloon,
1 atm), blue LEDs, rt, 24 h, isolated yield. £/Z > 20/1. b) CH,Br, (0.03 M). ¢) CH,Br, (0.1 M). d) BrCCl; (10 equiv.).
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with a metal-free catalyst, 4CzIPN, in the presence of BrCCl,
(10 equiv.) (Table 1, entry 9).

3.2 Substrate scope evaluation

Vinylsulfone-containing molecules have been found to be
widespread in biological research [24], and S-bromo vi-
nylsulfones are an important class of compounds that are
versatile building blocks and valuable intermediates in or-
ganic synthesis and medicinal chemistry [25]. As a con-
sequence, with the optimal reaction reactions in hand (Table
1, entry 9), we next investigated the scope of a variety of
sodium sulfinates summarized in Scheme 2. A number of
phenyl sodium sulfinates with electron-donating groups,
including not only 1°-alkyl groups but also the more hin-
dered 2°- and 3°-alkyl groups, were converted into their
corresponding products in moderate to good yields (2a—2f).
Relatively lower yields were found when an electron-with-
drawing group was attached to the phenyl ring (2g—2Kk),
which can be due to the reduced reductive quenching ability
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toward the photoexcited photocatalyst. Gratifyingly, the re-
action exhibited very good compatibility with various
functional groups, including halides (21-2n), amide (20),
ester (2p), nitrile (2q, 2r), and ketone (2s). Moreover, 2-
naphthyl- and 1-naphthyl-substituted sodium sulfinates are
both suitable substrates, although in slightly lower yields
(2u, 2v). Notably, we also examined the heteroaryl-
substituted sodium sulfinates and found that the corre-
sponding products 2w and 2x were generated in good yields.
Considering the good efficiencies of these transformations,
we also extended the reaction scope to alkyl sodium
sulfinates. Fortunately, the reaction went smoothly to afford
2y in good yield. It is worth noting that S-chloro and S-iodo
vinylsulfones can also be furnished, although with lower

efficiencies (See Supporting Information online for
details).
3.3 Various transformations

The introduction of both bromide and the sulfonyl group at

-y O

H 1 mol%4CzIPN " A A O
soma + |+ eco, SHEEHO(9N00SM) 0P O Q R
R : rt, blue LEDs, 24 h RSB
H 10 equiv. NC R
1 2
N
1 atm
(ONpO) O\\s,/O > o, 0 O\\s,/O o O\\S//O
o o gt o o
Me’ MeO iPr
2a, 77% 2b, 62% 2¢,61% 2d, 65% 2e, 55%
o, 0 [eNpe} 0\\8/,0 o, 0 0.0
N7 N >, Mg N
g ot ot ot ot
tBu F Cl Br F3C
2f, 63% 2g, 68% 2h, 70% 2i,71% 2j,57%
F o, 0 [oNpe] i O\\S//O & O\\S,/O >, O\\S,/O/
S\/\Br CID/S % Br /©/ Br I:'/ \'/\Br Q/ \/\Br
F Me Me Br AcHN
2k, 37% 21, 53% 2m, 81% 2n, 70% 20, 50%°
o, 0 o, 0 o, ,0 o, ,0
MeO,C o o - NC T o A
o S
Ny’ Br ~ gy ~ ey Br
T
NC Ph
2p, 45% 2q, 56% 2r, 58% e 2s, 95% 2t, 45%
o, 0
(0} ) N O, .0 G
N
S O 0P N e =S p N’
r M S
SO e G & S,
2u, 50% 2v, 31% 2w, 61% G o 729 2y, 70% yield®

Scheme 2 Reaction scope of sodium sulfinates with acetylene. a) Reaction conditions: sodium sulfinate 1 (0.5 mmol), 4CzIPN (1 mol%), CH,Br,/H,0 (19/
1) (0.05 M), BrCCl; (10 equiv.), acetylene atmosphere (balloon, 1 atm), blue LEDs, rt, 24 h, isolated yield. E/Z > 20/1. b) MeCN/H,O (19/1) (0.05 M).

¢) NMR yield relative to starting material (color online).
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the same time onto the triple bond affords the opportunity to
design modular synthetic methods based on (E)-f-bromo
vinylsulfone by further modifications on these functional
groups. The compatibility and reactivity of (£)-f-bromo vi-
nylsulfone in Sonogashira coupling were then analyzed by
treatment of 2a with various alkynes (Scheme 3, left). To our
delight, a high yield of 3a was obtained in the reaction of 2a
and phenylacetylene using similar published conditions [26].
Various aryl alkynes with different electronic properties
worked well under these coupling conditions (3b—3h). No-
tably, the corresponding product 3e could still be produced,
although in lower yield, in the presence of a chloro group,
which may be reactive in the Sonogashira coupling reaction
conditions. Notably, functional groups such as nitrile (3f),
aldehyde (3g), and ester (3h) were well tolerated. Also,
thiophenyl and pyridinyl ethynes were suitable reaction
partners in this transformation, giving 3i and 3j in 91% and
71% yields, respectively. The linear alkyl ethynes including
functionalized alkyne could smoothly couple with 2a, ob-
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taining the corresponding ynenylsulfonyl bromides 3k—31 in
good to excellent yields. These experimental results imply
that acetylene can be introduced into the internal alkenes
through coupling reactions of (£)-fS-bromo vinylsulfone and
alkynes.

In addition, these (£)-f-bromo vinylsulfone can also un-
dergo Suzuki coupling with different boronic acids while
maintaining the sulfonyl group intact to access vinylsulfonyl
products (Scheme 3, middle). Phenylboronic acids with both
electron-donating and electron-withdrawing groups on the
phenyl ring are suitable substrates (4a—4g). The substrate
containing a reactive group, i.e., the chemically and biolo-
gically abundant aldehyde, gave the corresponding product
4f in a relatively lower yield. The transformation of the 1-
naphtyl derivative also gave the titled compound 4h in 97%
yield. Furthermore, via Suzuki couplings with alke-
nylboronic acids, the corresponding dienylsulfonyl molecule
becomes accessible (4j).

Considering the abovementioned transformations based on

Nucleophilic Substitution ¢
K,COj3 (1.5 equiv.)

rt, MeCN, Nu-H
Suzuki Coupling ®

4i, 92%

Pd(PPh3), (3 mol%) o
- S, O, Na,COj (1.5 equiv.) DK
g a pling AT B 5 Ph Nu
= R r r THF/H,0, 60 °C 5
0. 0 Pd(PPh3),Cl, (5 mol%) RB(OH), or
A Cul (10 mol%) e DO o, o
Ar \/\ K,COj3 (2 equiv.) eactive Siio Ar/s\%R Ph/S\'/kNu
3 R MeCN, 60 °C 4 6
For aryl alkyne: : !
o. 0 0\\8/,0/ :
N’ o
_S "~ :
PH \/\ Ph % :
Ph ;
3a, 89% 3b, 84% Me !
O P o, O :
S |
YN P \?\Q%ﬁ |
9 3d, 749 ;
3c, 80% OMe , 74% s :
Oy A SNPS) ;
S S A :
> - :
Ph N Ph \/\Q |
3e, 25% & 3f, 80% oN '\ Ph” ph/s Z Estrone derivative
: 5b, 83%, E/Z >20/1
O P O P : 4e, 86% L 4f
=z — : e o , 33%
Ph N Al X 5 . Q0
o0 : o OMe
' N’ ' Ph N s
3g, 93% e 3h, 85% COMe! Ph/s\¢\©\ o, P ‘ : /\é(
o0 : i ]
N 0\\8,/0/ 5 Br O ! 5¢, 95%, E/Z >20/1
Ph = s Ph” N ; 4g, 42% 3
> | N : 4h, 97% :
3i,91% 3j,71% N/ iFor heteroaryl boronic acid For vinyl boronic acid} B O S/\COZMe
------------------------------------------------------------------ : f N
For alkyl alkyne: E \\S//O i Ph” S/\COZMe
o\\s//O > Oy P i Ph” %ES) ; O\\S// AP
Ph” \/\/\/\ E / i Ph” NN e 'Sequential substitution/Giese addition
CHj E : :

3k, 66%

4j, 75% 6, 82%°

Scheme 3 Modular synthesis via transformations of (E)-S-bromo vinylsulfones 2. a) 2 (0.3 mmol) in MeCN (3 mL), alkyne (0.45 mmol), K,CO; (0.6
mmol), Cul (10 mol%), Pd(PPh;),Cl, (5§ mol%) under a N, atmosphere, 60 °C. b) 2 (0.3 mmol) in tetrahydrofuran (THF) (3 mL), boronic acid (0.45 mmol),
Na,CO; (0.45 mmol), Pd(PPh;), (3 mol%) and H,O (1 mL) under a N, atmosphere, 60 °C. ¢) 2 (0.2 mmol) in MeCN (2 mL), K,CO; (0.3 mmol), Nu-H (0.3
mmol) under a N, atmosphere, room temperature. d) 2 (0.2 mmol), NuH (0.8 equiv.), K,CO; (0.2 mmol). ¢) 2 (0.2 mmol), NuH (2.5 equiv.), K,CO; (2.5

equiv.) (color online).
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bromide, we questioned whether a nucleophilic substitution
reaction was possible to access vinyl compounds. Vi-
nylsulfone is a good Michael acceptor and has remarkable
efficiency toward nucleophiles. Interestingly, selective sub-
stitutions of the bromide to give 5a instead of Michael ad-
dition were observed when mixing the benzylamine with
(E)-f-bromo vinylsulfone 2a. Similar transformations were
also found in the reaction of 2a and other nucleophiles, such
as phenol and thiol, giving 5b and 5c¢ excellent yields and
stereoselectivities. These results disclose the great potential
of the structural modification of an array of complex biolo-
gical molecules in medicinal chemistry. Notably, further in-
creasing the thiol to 2.5 equiv., a double addition to 2a took
place, giving an expected mercaptal 6 in 82% yield. This
transformation proceeded via nucleophilic substitution fol-
lowed by Michael addition. These results indicate that the
reactions can be controlled selectively to obtain vinyl pro-
duct 5 and acetal 6 by adjusting the equivalents of nucleo-
philes. Moreover, this shows the potential for the
incorporation of two different nucleophiles into the same
carbon atom to obtain interesting molecules.

To further demonstrate the synthetic utility of this devel-
oped strategy, different experiments were performed
(Scheme 4). A gram-scale experiment was performed, and
2a was isolated in 61% yield, suggesting that large-scale
production may be possible. Particularly, after the temporary
modulation of chemical reactivity and desired functional

Ph
OO/\/

9, 80%, E/Z 10/1

OQBr m

alkyl halide

Pd(PPh3), (3 mol%
Na,COj3 (1.5 equiv.
THF/H,0, 60 °C
RB(OH),
Suzuki Coupling

Ph
7, 85%, E/Z >20/1

J

1a
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group transformation, the sulfonyl moiety can be easily re-
moved. To some extent, radical-mediated desulfonylation
processes have flourished rapidly along with the current re-
naissance of radical chemistry [20d]. Then, additional ex-
periments were conducted to realize the transformations of
the sulfonyl group (Scheme 4). Direct Csp3—H bond viny-
lation was obtained in the reaction of 4a and 1-phe-
nylpyrrolidine, affording 7 (E/Z >20/1) in 85% yield [27].
Due to the good performance obtained in this radical de-
sulfonylation pathway and the extension of this approach,
other kinds of radical precursors, such as amino acid and
alkyl bromide, were next studied. It was found that this
strategy can also be adapted for use with a-amino acid, af-
fording the desired desulfonylated vinyl compound 8 (£/Z >
20/1) in 90% yield. Alkyl bromide was also a suitable partner
to access the corresponding product 9 (E£/Z) in 80% yield
[28]. Furthermore, based on previous work [29], similar
products 10 and 11 could be obtained from 3a via radical
desulfonylation. It is worth noting that the substituted cy-
clobutene 12 can be prepared in 45% yield over two steps via
the energy transfer strategy from 3a, which was used directly
without further purification.

3.4 Reactivity differences in different alkynes

As a surrogate of acetylene, functionalized acetylene (£)-f-
bromo vinylsulfones exhibited powerful transformations,

PhSOzNa + H—==—H + BrCCl, 0 NF S

1 atm S Ph
0
§ 10,78%, E/Z = 1.5/1
g
g
0
§_ 53 G ref. 29
= Ar = o
S R
@

) Pd(PPh3),Cl, (5 mol%)

(OR8]

) N’ Cul (10 mol%)
Ph” Br -

2a,0.917 g, 61% KoCO3 (2 equiv.)
MeCN, 60 °C

Sonogashira Coupling

Pd(PPh3),Cl, (5 mol%)

3a, R=H, 89%
3¢, R =4-OMe, 80%

o Cul (10 mol%)
K5COj3 (2 equiv.) (o)
Ph OH| 1) 20
MeCN, 60 °C
NHBoc © Hst\N/ ref.29
amino acid | Ar = 4-OMePh
——— Sulfone-induced transformatia
o - Ph s
. _Ph N 1 mol% Ir(ppy)s
Ph ph/s\%\ MeCN, blue LEDs N\ SO,Ph i C)J\N NS
M AN = —>JL = 3 | /\'/\Ar
Ph” “Ph 519
(£)8, 92%, E/Z >20/1 3a (not isolated) 12, 45% over two steps, dr 3/2 11, 84%, EIZ =11

Scheme 4 (Desulfonylation) transformations based on the sulfonyl group. Reaction conditions: I) 4a (0.26 mmol), Ir[dF(CF;)ppy],(dtbpy)PF (0.003
mmol), CsOAc (0.75 mmol), 1-phenylpyrrolidine (0.63 mmol), 1,2-dichloroethane (DCE) (2.5 mL), blue LEDs, 24 h; II) 4a (0.24 mmol), Ir(ppy),(dtbpy)PF
(0.003 mmol), N-tert-butoxycarbonyl-DL-phenylalanine (0.30 mmol) and CsHCO; (0.57 mmol), 1,4-dioxane (15 mL), blue LEDs, 24 h; III) 4a (0.25 mmol),
Ir[dF(CF3)ppyl,(dtbpy)PF¢ (0.003 mmol), K,CO; (0.50 mmol), 4-bromotetrahyropyran (0.73 mmol), (TMS);SiH (0.30 mmol), MeCN (5 mL), blue LEDs,
24 h (color online).
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1 mol% 4CzIPN R'" Br
PhSO,Na + BrCCly + Ri_—R2 CH,Bry/H,0 (19/1) (0.05 M) —
rt, blue LEDs, 24 h PhO,S  R?
Ph— Ph—— P / MeO,C—==—CO,Me
3C »
Aryl alkyne Alkyl alkyne l
Br H Br MeO,C Br

H Br o cl
— +
PhO,S Ph PhMcl PhO,S Ph  pho,S

13, n.d. 14, 68% 15, 70% 16, n.d.

PhO,S  nPr PhOzSﬂﬁCHa PhO,S  CO,Me

17, 37% 18, 61%, E/Z 10.7/1 19, trace

Scheme 5 Reactivity differences between acetylene and its homologs (color online).

obtaining various functional molecules, especially alkenes.
We wondered whether the established method for vi-
nylsulfones is possible to produce substituted vinylsulfones
when substituted alkynes are utilized. Then, different kinds
of alkynes were subsequently examined (Scheme 5). The
reaction of la and phenylacetylene was performed under
standard conditions, furnishing the interesting molecule 14 in
68% yield but without corresponding product 13 being ob-
served. Further research on this fantastic transformation is
ongoing in our lab. Notably, a 70% yield of (£)-f-bromo
vinylsulfones 15 was isolated from 1-phenylpropyne, but no
corresponding product 16 could be observed from dipheny-
lacetylene. This phenomenon clearly exhibited a different
reaction reactivity between substituted alkyne and acetylene
and motivated us to test the reactivity of alkyl alkyne further.
The vinylsulfones 17 and 18 were isolated in 37% and 61%
yields from 4-octyne and 1-heptyne, respectively, i.e., the
alkyl alkyne shows a similar reactivity to acetylene. How-
ever, dimethyl acetylenedicarboxylate was not suitable for
this transformation.

3.5 Reaction mechanism

To further gain mechanistic insights, several control ex-
periments were performed. Control experiments demon-
strated that blue LEDs and photocatalysts are essential to this
transformation (for details, see the Supporting Information
online). Moreover, the reaction was found to be inhibited by
the addition of the radical scavenger TEMPO (for details, see
the Supporting Information online), suggesting the involve-
ment of radicals in the reaction. Our Stern—Volmer fluores-
cence experimental results show that the photoexcited
4CzIPN* is quenched by 1a. Cyclic voltammetry measure-
ments of BrCCl; revealed that the reduction potential of
BrCCl, (E,,"" = —0.766 V vs. SCE in MeCN) is higher than
that of the reduced photocatalyst 4CzIPN™ (E/[4CzIPN"/
4CzIPN = —1.21 V vs. SCE in MeCN]) [30], which would
lead to the photoreductive formation of the BrCCl; radical
anion and then ‘CCl; and Br (see Supporting Information

online for details). -CCl; could undergo addition across un-
saturated bonds, which is supported by the formation of 14
from phenylacetylene in Scheme 5. Moreover, the 14 adducts
also demonstrated the generation of the vinyl cation and
involvement of nucleophilic reaction (see Supporting In-
formation online for details), which agrees with the results of
common alkynes in Scheme 5. CH,Br, cannot be reduced by
4CzIPN" due to its stronger reduction potential (E,,"" =
—2.073 V vs. SCE in MeCN).

Based on the mechanistic results and known literature [31],
a plausible reaction mechanism is illustrated in Scheme 6.
Upon irradiation with visible light, the photocatalyst 4CzIPN
is known to access the highly oxidizing excited state species
(4CzIPN*), which can be reductively quenched by sodium
sulfinate 1a to furnish radical intermediate I and reduced
photocatalyst 4CzIPN". The single electron transfer between
the 4CzIPN"™ and BrCCl; generates -CCl; and a bromine
anion together with regeneration of the photocatalyst
4CzIPN. Then, the intermediate I PhSO,- can be captured by
acetylene gas to obtain vinyl radical species I1, which is then
photooxidated to afford cation intermediate III, followed by
nucleophilic reaction with Br to afford the final product 2a
(path 1). Moreover, in path 2, the vinyl radical intermediate
IT undergoes radical cross-coupling of the Br radical [31d—
31f] from the bromine anion oxidized by 4CzIPN* [31d,31f]
to generate the f-bromo vinylsulfone adduct, which cannot
be excluded.

o
g I g H—=——H path 1 0 0
Ph™ "0 Ph” 70 PH \%& /\ PH \,/.
1
! 4CzIPN"  4CzIPN™ Al

/ S = path 2 . Br~
=" 5 — CClg + Br Br
& 4CzIPN 3 Z w‘
o 2 . =
i 4CzIPN 4CzIPN 0\\3/,0
_S.
Ph”4,0Na A PN
photoredox catalysis 5 Br
4CzIPN \ Bifunctional acetylene
\ BrCCly
FO capn

Scheme 6 Plausible mechanism (color online).
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4 Conclusions

In this work, we have designed a general approach to in-
corporating gaseous acetylene into a bench-stable and prac-
tical reagent, (E)-f-bromo vinylsulfones, which can serve as
acetylene surrogates to realize different transformations with
high efficiency. Sonogashira coupling, Suzuki coupling, and
substitution with different N-, O-, and S-nucleophiles by
manipulations on the f-bromide position can be well estab-
lished while maintaining the sulfonyl group intact. The sul-
fonyl group involved in (£)-f-bromo vinylsulfones can also
be converted to various alkenes with different partners, such
as alkyl amine, a-amino acid, alkyl halide, and ethers. These
powerful transformations of (£)-f-bromo vinylsulfones
based on both sulfonyl group and bromide and their simple
preparation from acetylene will promote the utilization of
acetylene in organic synthesis.
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Visible Light-Promoted Three- Component Carboazidation of Unactivated

Alkenes with TMSN; and Acrylonitrile
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ABSTRACT A novel difunctionalization of unactivated alkenes has been reported via visible light-promoted three-component carboazidation using
TMSN; and acrylonitrile as partners without any stoichiometric oxidants. This protocol is operationally simple for straightforward access to azido deriva-
tives with good functional group tolerance from readily available starting materials. A facile azido radical-catalyzed [3+2] cycloaddition reaction of vinylcy-
clopropane with acrylonitrile was also observed to deliver a multi-substituted cyclopentane.
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Introduction

Alkene difunctionalizations have been continuously attractive
for efficient construction of various useful synthetic intermediates
and targets.[” Organoazides have been used as efficient synthetic
intermediates due to their diversity of further transformations.™”
The combination of the formations of carbon-azide bond and
carbon-X (halogen, P, O, N) bonds has been successfully report-
ed.” The carboazidation of alkenes was used to form carbon-(sp
or spz) carbon bonds or fluorinated carbon bonds."” However, to
the best of our knowledge, the three-component carboazidation
reaction with the formation of non-fluorinated carbon (sp3)-car-
bon (sp’) is still limited (Scheme 1). Renaud and co-workers re-
ported two types of carboazidation of alkenes with a-iodoacetate
and phenylsulfonyl azide, or using alkylsulfonyl azides as both
alkyl and azido sources.” Recently, Zhu™® group and Yangm group,
respectively, reported carboazidation of terminal styrenes or cy-
clic styrene with acetonitrile or aldehydes as carbon sources using
peroxides as oxidants. Li and co-workers reported an azidometh-
ylation of active alkenes with dimethyl sulfoxide as a methyl
source using H,0, as an oxidant.® so far, over stoichiometric per-
oxides have to be used and aliphatic alkene is a still challenging

Scheme 1 The carboazidation of alkenes
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substrate. Here, we reported a three-component carboazidation
of unactivated alkenes with TMSN; and acrylonitrile via visible
light photocatalysis without any stoichiometric oxidants.

Our group is quite interested in visible light-promoted alkene
difunctionalizations.” In our previous studies, the azido radical™®
could react with alkene to form carbon radical,[m which could be
trapped by dioxygen.[ge] Based on these result, we hypothesized
that the Michael acceptor, such as acrylonitrile, was an alternative
trapper which leads to the formation of carbon (sp3)-carbon (sp3)
bond to afford the carboazidation product (Scheme 1b).

The proposed mechanism was presented in Scheme 1c. The
azidotrimethylsilane could be oxidized by iridium photocatalyst
(Eyx-=+0.66 V)m] to azido radical based on the oxidation poten-
tial of the azidotrimethylsilane (measured 0.66 V vs. SCE in MeCN
and 0.600 V vs. SCE in acetone) or azido anion (0.655 V vs. SCE in
MeCN).!*?!

The azido radical could be trapped by alkene to generate
benzyl radical species I, which could undergo radical Michael ad-
dition to form carbon center radical Il. This carbon radical Il could
be reduced by low valent photocatalyst to regenerate the ground
state of photocatalyst, and afford the corresponding product 3a in
the presence of proton source.

Results and Discussion

Based on the above hypothesis, we extensively investigated
the reaction conditions for the carboazidation of a-methyl sty-
rene with various photocatalyst at room temperature under the
irradiation of 8 W blue LEDs for 9 h using water as proton donor
and acetonitrile as a solvent. Various visible light photocatalysts
were screened using TMSN; as an azido source and acrylonitrile
as a Michael acceptor, and Ir(ppy),(dtbbpy)PFs was found to cat-
alyze the reaction to afford three-component carboazidation
product in 67% vyield (entry 1, Table 1 and also in Table S1). It
should be noted that the generated azido radical could react
much rapider with a-methyl styrene than electron-deficient acry-
lonitrile. Various solvents were tested and no better results were
observed (entries 2—7). The reaction with 2 equiv. of TMSN3 in a
solvent of MeCN (0.2 mol/L) afforded the desired product in 80%
yield (entry 8 as the standard conditions A). No desired products
were obtained in the absence of photocatalyst or light (entries 10
and 11). Additionally, the reaction took place by using MeOH (3
equiv.) instead of H,0 (10 equiv.) to give 3a in 71% yield (entry 12
as the standard conditions B).

With optimized conditions in hands, the scope of substrate
was explored (Table 2). The a-methyl styrenes with various
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Table 1 Conditions optimization for carboazidation of alkenes’

Ir(ppy)(dtbbpy)PFg (2 mol%)

H,0 (10 equiv.) Ns

Lo
Ph

J\ +TMSN3 + Z>oN
Ph MeCN (0.2 mol/L), r.t.

2 equiv. 6 equiv.
1a 8 W blue LEDs, 9 h 3a
Entry Changes to Yield®/%
1 — 67
2 THF 57
3 MeOH 0
4 DCM 21
5 Acetone 61
6 MeNO, 17
7 dioxane 61
8 TMSNs; (2 equiv.), 0.2 mol/L 80 (75)
9 TMSN3 (2 equiv.), 0.2 mol/L without water 67
10 entry 8 without photocatalyst 0
11 entry 8 without light 0
" TMSN; (2 equiv.), acetone (0.2 mol/L), 71(70)

MeOH (3 equiv.) was used instead of H,0

“Conditions: a-methyl styrene (0.3 mmol), TMSN; (3 equiv.), acrylonitrile
(6 equiv.), water (10 equiv.), Ir(ppy).(dtbbpy)PFs (2 mol%), solvent (0.1
mol/L), at room temperature under the irradiation of 8 W blue LEDs for 9
h. °Yields were determined by 'H NMR analysis using mesitylene as an
internal standard. Isolated yield in the parentheses.

substituents, such as ether, halides, amine, amide, at para- or
meta- position on aryl ring were suitable for this transformation.
However, the sterically hindered substrates with ortho-substitu-
tion could not afford the desired product. The a-1°-alkyl substit-
uent could be tolerated (3k—3l), however, the a-2°-alkyl substit-
uent was not suitable (3m). The simple styrenes with electron-
rich or electron-deficient substitutions could be transferred to the
corresponding carboazidation products in 58%—79% yields. The
aliphatic alkenes could participate in reactions to afford 3u and 3v
in 62% and 47% vyield, respectively. The acyl protected cinnamyl
alcohol could be delivered to 3w in 37% yield with poor diastere-
oselectivity. The trisubstituted alkene could also involve in the
reaction to give 3x in 45% yield with 3.9/1 dr. The alkene con-
taining estrone-derivative could be transformed into the corre-
sponding product. The intramolecular reaction of 1,6-diene 4
could undergo smoothly to afford cyclization product 5 in 62%
yield with 3.2/1 dr (Table 2 eq. 1). The other Michael acceptors
have been tested. The reaction of styrene with diethyl fumarate
afforded 3aa in 21% yield with 2/1 dr. The reaction of styrene
with cyclohex-2-enone afforded 3ab in 34% yield with 1/1 dr.
While the reaction of styrene with diethyl 2-methylenemalonate
did not afford desired product 3ac.

To demonstrate the synthetic utility, the further derivatiza-
tions have been carried out (Scheme 2). The click reaction of 3a
afforded 6 in 67% yield. The reduction reaction of 3a could afford
7 in 97% vyield. The nitrile group could be hydrolyzed to give 8 in
66% yield, with the recovery of 3a for 25%. The lactam 9 could be
obtained via reduction and cyclization of 8 using 10 mol% Pd/C
under one atmosphere of hydrogen in 56% yield.

The reactions were inhibited in the presence of TEMPO or air
which demonstrated the possibility of radical process (egs. 2 and
3). The reaction of 1a using D,0 afforded D-3a in 68% yield with
45% D-incooperation, which indicated that the H,0 was the hydro-
gen donor (eq. 4). We also carried out the fluorescence quenching
study, and found that the fluorescence of photocatalyst could be
quenched by TMSN;, which was consistent with our hypothesis
(See Sl Figure S3). The reaction of radical-clock substrate 10 under
the standard conditions did not afford any carboazidation or
ring-opening carboazidation products (eq. 4). Unexpectedly, a
facile azido radical initiated [3+2] cycloaddition reaction of 10
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Table 2 Substrate scope
3
Rl . Conditions A R
OR® 4 TMSN; + ZCN ————— N
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N3 N3 CN
N&VCN k\/CN
Ph Nn-Cq1Hzg Ph Ohc
N3
3u: 62%” 3v: 47%P 3w: 37%P, 1.1/1 dr

N3
Tl
Ph

3x: 45%P, 3.9/1 dr

CN conditions B Ph

+TMSN; — o
without acrylonitrile

4 5
62%, 3.2/1 dr

Intermolecular carboazidation with different Michael acceptors

CO,Me S COLE
MeO,C
CO,Et
N; N
Ph Ph Noopn 3
3aa 21%” 3ab 34%"° 3ac trace?
dr2/1 dar 1N

“Conditions A: Ir(ppy),(dtbbpy)PFs (2 mol%), MeCN (0.2 mol/L), alkene (0.3
mmol), Michael acceptor (6.0 equiv.), TMSN; (2 equiv.), H,0 (10 equiv.), r.t.,
8 W blue LEDs. ” Conditions B: Ir(ppy)(dtbbpy)PFs (2 mol%), acetone (0.2
mol/L), alkene (0.3 mmol), Michael acceptor (6.0 equiv.), TMSN; (2 equiv.),
MeOH (3 equiv.), r.t., 8 W blue LEDs.

Scheme 2  Further derivatizations
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CN
DIPEA (3 equiv.), MeCN, PhJ/<\/

r.t., overnight .
6 67% yield

NH
Na PA/C (0.4 mol%) 2

-
Ph H,, EtOH, r.t., 13 h Ph

3a 7 97% yield
HCl/dioxane
MeOH, r.t., 24 h
H
N N__O
/Q\/COzMe Pd/C (10 mol%) /U
e
Ph Hy, AcOMe  Ph
8 66% yield rt,24h 9 56% yield

with acrylonitrile was observed to deliver a substituted cyclo-
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J]\ Conditions A @
B — 3a
Ph with
1a TEMPO (1.2 equiv.)
<5% NMR yield

Conditions A
1a 3a (3)
under air
<5% NMR yield
N3
Conditions A

it _CN
_— > /Q\C
1a i Ph

D,0 instead of H,O Hy(D) 45% D @

68% yield D-3a
Ph Conditions A Ph Ph
Ph . ; ®)
92% yield, 1.5/1 dr NC
10 1"

pentane 11 in 92% yield (major isomer/other minor isomers
1.5/1). The reaction of 10 without TMSNj; did not occur. To the
best of our knowledge, it is the first case of nitrogen radical-
promoted [3+2] cycloaddition of vinylcyclopropane with alkene.
These results also strongly supported the radical pathway. We
proposed that the generated azido radical could attack carbon-
carbon double bond on the VCP to afford the benzyl radical spe-
cies (B), which could lead to a radical ring opening pathway and
generate carbon center radical (C). The radical C could be trapped
by acrylonitrile to afford radical species D, which underwent the
intramolecular cyclization to afford E. The deazidination reaction
of E could occur to afford 11 and regenerate the azido radical. The
control experiments have been added in SI.

Scheme 3  Possible mechanism of the formation of compound 11

Conclusions

In summary, we reported the first example of visible light-
promoted three-component carboazidation of unactivated al-
kenes using TMSN; and acrylonitrile as reaction partners without
any stoichiometric peroxides. The intramolecular reaction of
1,6-diene could also undergo smoothly to afford the cyclization
product. The reaction afforded &-azido alkylnitriles, which could
be readily converted into valuable building blocks for medicinal
chemistry and organic synthesis. A facile azido radical initiated
[3+2] cycloaddition reaction of vinylcyclopropane with acryloni-
trile was observed to deliver a substituted cyclopentane. The
asymmetric alkene difunctionalization is undergoing in our labor-
atory.

Experimental

General Information. DCM, MeCN, NEt; and iPr,NEt were dis-
tilled from calcium hydride, and acetone was distilled from potas-
sium carbonate. Ethanol methanol and methyl acetate were used
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directly. Unless otherwise noted, all the corresponding ketones
from suppliers were used directly without further purification.
Azidotrimethylsilane (TMSN;) was purchased from J&K Chemicals.
Acrylonitrile was purchased from Aladdin and used directly. NMR
spectra were recorded on a Bruker-400 instrument. "4 NMR
chemical shifts were referenced to the tetramethylsilane (6 0), 13
NMR chemical shifts were referenced to the solvent resonance (6
77.00, CDCls). The following abbreviations (or combinations there-
of) were used to explain multiplicities: s=singlet, d=doublet, t=
triplet, m=multiplet, br=broad, g=quadruplet. IR spectra were
recorded on a Perkin-Elmer Spectrum One FTIR spectrometer with
diamond ATR accessory. High-resolution mass spectra (HRMS)
were recorded on Waters XEVOG2-S TOF or GCT Premier. All ma-
nipulations were conducted under Schlenk tubes.

General procedure A: Conditions A. To a 50 mL flame-dried
Schlenk flask cooled under N,, Ir(ppy).(dtbbpy)PFs (2 mol%), al-
kene 1 (0.3 mmol), TMSN; (0.6 mmol), acrylonitrile (120 pL), H,0
(10 equiv.) and acetonitrile (1.5 mL) were added. The mixture was
degassed through three freeze-pump-thaw cycles under N,. The
reaction was placed at room temperature and stirred in the front
of 8 W blue LEDs at a distance of 10 cm for 9 h. The reaction mix-
ture was concentrated in vacuo before it was purified by flash
chromatography on silica gel to afford 3.

General procedure B: Conditions B. To a 50 mL flame-dried
Schlenk flask cooled under N,, Ir(ppy).(dtbbpy)PFs (2 mol%), al-
kene 1 (0.3 mmol), TMSN; (0.6 mmol), acrylonitrile (120 uL),
MeOH (3 equiv.) and acetone (1.5 mL) were added. The mixture
was degassed through three freeze-pump-thaw cycles under N,.
The reaction was placed at room temperature and stirred in the
front of 8 W blue LEDs at a distance of 10 cm for 9 h. The reaction
mixture was concentrated in vacuo before it was purified by flash
chromatography on silica gel to afford 3.

5-Azido-4-methyl-4-phenylpentanenitrile (3a). Prepared ac-
cording to the general procedure A using alkene 1a (34.9 mg, 0.29
mmol), TMSN3 (79 pL, 0.6 mmol), acrylonitrile (120 pL, 1.8 mmol),
H,0 (54 uL, 3 mmol) and MeCN (1.5 mL) as starting materials to
afford 3a (47.5 mg, 0.22 mmol, 75% yield) as a colorless oil. IR v:
2973, 2922, 2246, 2100, 1493, 1254, 1052 cm_l; 'H NMR (400
MHz, CDCl;) &: 7.42—7.34 (m, 2H), 7.33—7.25 (m, 3H), 3.51 (d,
J=12.0 Hz, 1H), 3.44 (d, J=12.0 Hz, 1H), 2.28—1.94 (m, 4H), 1.42
(s, 3H); *C NMR (101 MHz, CDCls) &: 141.7, 128.9, 127.3, 126.1,
119.6, 62.2, 42.2, 34.9, 21.9, 12.4; HRMS (ESI-TOF) Calcd for
CyoH1aNg [M+H]': 215.1297; found 215.1303.

5-Azido-4-(3-methoxyphenyl)-4-methylpentanenitrile  (3b).
Prepared according to the general procedure A using alkene 1b
(42.5 mg, 0.29 mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120
uL, 1.8 mmol), H,0 (54 uL, 3 mmol) and MeCN (1.5 mL) as starting
materials to afford 3b (43.3 mg, 0.18 mmol, 62% yield) as a color-
less oil. IR v: 2973, 2903, 2248, 2101, 1583, 1248, 1049 cm_l; 4
NMR (400 MHz, CDCl;) 6: 7.34—7.27 (m, 1H), 6.89—6.78 (m, 3H),
3.82 (s, 3H), 3.50 (d, J=12.0 Hz, 1H), 3.43 (d, J=12.0 Hz, 1H),
2.25—1.94 (m, 4H), 1.40 (s, 3H); *C NMR (101 MHz, CDCl;) &:
159.9, 143.5, 129.9, 119.7, 118.3, 113.2, 111.5, 62.2, 55.2, 42.3,
35.0, 21.9, 12.4; HRMS (ESI-TOF) Calcd for Cy3HigN,O [M+Na]™:
267.1222; found 267.1228.

5-Azido-4-methyl-4-(p-tolyl)pentanenitrile (3c). Prepared ac-
cording to the general procedure B using alkene 1c (38.6 mg, 0.29
mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120 pL, 1.8 mmol),
MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as starting materi-
als to afford 3¢ (36.3 mg, 0.16 mmol, 54% yield) as a colorless oil.
IR v: 2973, 2904, 2247, 2100,1515, 1385, 1256, 1072 cm_l; 'y
NMR (400 MHz, CDCl;) 6: 7.23—7.11 (m, 4H), 3.49 (d, J/=12.0 Hz,
1H), 3.42 (d, J=12.0 Hz, 1H), 2.34 (s, 3H), 2.25—1.93 (m, 4H),
1.40 (s, 3H); *C NMR (101 MHz, CDCl;) &: 138.6, 137.0, 129.6,
126.0, 119.8, 62.4, 42.0, 34.9, 22.0, 20.9, 12.4; HRMS (ESI-TOF)
Calcd for Ci3HigN, [M+H]*: 229.1453; found 229.1457.

5-Azido-4-methyl-4-(m-tolyl)pentanenitrile (3d). Prepared
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according to the general procedure A using alkene 1d (39.8 mg,
0.30 mmol), TMSN3 (79 uL, 0.6 mmol), acrylonitrile (120 uL, 1.8
mmol), H,0 (54 pL, 3 mmol) and MeCN (1.5 mL) as starting mate-
rials to afford 3d (41.5 mg, 0.18 mmol, 60% yield) as a colorless oil.
IR v: 2973, 2904, 2100, 2247, 1452, 1385, 1051 cm_l; 'H NMR (400
MHz, CDCl5) 6: 7.30—7.22 (m, 1H), 7.13—7.03 (m, 3H), 3.50 (d,
J=12.0 Hz, 1H), 3.43 (d, J=12.0 Hz, 1H), 2.37 (s, 3H), 2.24—1.94
(m, 4H), 1.40 (s, 3H); >C NMR (101 MHz, CDCl;) &: 141.7, 138.5,
128.7,128.0, 126.8, 123.1, 119.7, 62.3,42.1, 34.9, 21.9, 21.6, 12.4;
HRMS (ESI-TOF) Calcd for Ci3HigN, [M+H]": 229.1453; found
229.1452.

5-Azido-4-(4-chlorophenyl)-4-methylpentanenitrile (3f). Pre-
pared according to the general procedure A using alkene 1f (47.4
mg, 0.31 mmol), TMSN3 (79 pL, 0.6 mmol), acrylonitrile (120 pL,
1.8 mmol), H,0 (54 pL, 3 mmol) and MeCN (1.5 mL) as starting
materials to afford 3f (45.3 mg, 0.18 mmol, 59% yield) as a color-
less oil. IR v: 2973, 2903, 2250, 2102, 1401, 1072 cm_l; 'H NMR
(400 MHz, CDCl5) 6: 7.36 (d, J=8.4 Hz, 2H), 7.23 (d, J=8.8 Hz, 2H),
3.50 (d, J=12.0 Hz, 1H), 3.43 (d, /=12.0 Hz, 1H), 2.24—1.97 (m,
4H), 1.41 (s, 3H); **C NMR (101 MHz, CDCl;) &: 140.4, 133.3, 129.1,
127.6, 119.4, 62.1, 42.0, 34.8, 22.0, 12.4; HRMS (ESI-TOF) Calcd
for C1,H13CIN, [M+H]*: 249.0907; found 249.0921.

5-Azido-4-(3-chlorophenyl)-4-methylpentanenitrile (3g). Pre-
pared according to the general procedure B using alkene 1g (44.8
mg, 0.29 mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120 pL,
1.8 mmol), MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as
starting materials to afford 3g (48.9 mg, 0.20 mmol, 67% yield) as
a colorless oil. IR v: 2977, 2903, 2248, 2102, 1570, 1407, 1074 cm_l;
"H NMR (400 MHz, CDCl3) &: 7.36—7.25 (m, 3H), 7.21—7.16 (m,
1H), 3.51 (d, J=12.0 Hz, 1H), 3.44 (d, J=12.0 Hz, 1H), 2.24—1.98
(m, 4H), 1.42 (s, 3H); *C NMR (101 MHz, CDCl;) &: 144.1, 135.0,
130.2, 127.6, 126.6, 124.3, 119.4, 61.9, 42.4, 34.8, 21.9, 12.4;
HRMS (ESI-TOF) Calcd for CyoHi3CIN, [M+H]': 249.0907; found
249.0919.

5-Azido-4-(4-fluorophenyl)-4-methylpentanenitrile (3h). Pre-
pared according to the general procedure A using alkene 1h (42.9
mg, 0.31 mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120 pL,
1.8 mmol), H,0 (54 uL, 3 mmol) and MeCN (1.5 mL) as starting
materials to afford 3h (57.7 mg, 0.25 mmol, 79% vyield) as a color-
less oil. IR v: 2982, 2903, 2252, 2104, 1512, 1235, 1072 cmfl; H
NMR (400 MHz, CDCls) &: 7.26 (dd, J=7.6, 5.6 Hz, 2H), 7.07 (t, /=
8.4 Hz, 2H), 3.49 (d, J=12.0 Hz, 1H), 3.42 (d, J=12.0 Hz, 1H),
2.24—1.93 (m, 4H), 1.41 (s, 3H); *C NMR (101 MHz, CDCl;) &:
161.8, (d, /=246 Hz), 137.5 (d, /=3.3 Hz), 127.8 (d, /=8.0 Hz),
119.5, 115.7 (d, /=21.1 Hz), 62.3, 41.9, 34.9, 22.0, 12.3; r NMR
(376 MHz, CDCls) &: —=115.0; HRMS (ESI-TOF) Calcd for Cy,HysFN,
[M+H]": 233.1202; found 232.1205.

4-(3-Aminophenyl)-5-azido-4-methylpentanenitrile (3i). Pre-
pared according to the general procedure A using alkene 1i (42.2
mg, 0.36 mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120 uL,
1.8 mmol), H,0 (54 pL, 3 mmol) and MeCN (1.5 mL) as starting
materials to afford 3i (37.7 mg, 0.16 mmol, 52% yield) as a color-
less oil. IR v: 2973, 2904, 2247, 2100, 1606, 1072 cm_l; "H NMR
(400 MHz, CDCl5) 6: 7.14 (dd, J/=8.0, 7.6 Hz, 1H), 6.64 (dd, J/=8.0,
1.2 Hz, 1H), 6.62—6.54 (m, 2H), 3.72 (br s, 2H), 3.47 (d, J=12.4 Hz,
1H), 3.40 (d, J=12.4 Hz, 1H), 2.21—1.89 (m, 4H), 1.36 (s, 3H); C
NMR (101 MHz, CDCl;) 6: 146.8, 143.0, 129.8, 119.8, 116.1, 114.0,
112.8, 62.2, 42.2, 34.9, 21.9, 12.4; HRMS (ESI-TOF) Calcd for
C1,H1sNs [M+K]": 268.0965; found 268.0952.

tert-Butyl 4-(1-azido-4-cyano-2-methylbutan-2-yl)phenyl)car-
bamate (3j). Prepared according to the general procedure B using
alkene 1j (72.6 mg, 0.31 mmol), TMSNj; (79 uL, 0.6 mmol), acrylo-
nitrile (120 uL, 1.8 mmol), MeOH (36 uL, 0.9 mmol) and acetone
(1.5 mL) as starting materials to afford 3j (50.8 mg, 0.15 mmol, 44%
yield) as a colorless oil. IR v: 3340, 2981, 2903, 2250, 2102, 1716,
1525 1407 cm™%; *H NMR (400 MHz, CDCl5) &: 7.38 (d, J=8.4 Hz,
2H), 7.19 (d, J=8.4 Hz, 2H), 6.57 (br s, 1H), 3.47 (d, J=12.4 Hz,
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1H), 3.41 (d, J=12.4 Hz, 1H), 2.23—1.93 (m, 4H), 1.52 (s, 9 H),
1.39 (s, 3H); *C NMR (101 MHz, CDCl3) &: 152.6, 137.5, 136.1,
126.7, 119.7, 118.8, 80.7, 62.3, 41.9, 34.9, 28.3, 21.9, 12.4; HRMS
(ESI-TOF) Calcd for C;;H,3Ns0, [M+Na]*: 352.1749; found 352.1759.

4-(Azidomethyl)-4-phenylheptanenitrile (3k). Prepared ac-
cording to the general procedure B using alkene 1k (37.2 mg, 0.28
mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120 uL, 1.8 mmol),
MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as starting materi-
als to afford 31 (38.3 mg, 0.17 mmol, 60% yield) as a colorless oil.
IR v: 2973, 2247, 2103, 1452 cm™*; *H NMR (400 MHz, CDCl3) &:
7.40—7.35 (m, 2H), 7.30—7.25 (m, 1H), 7.23—7.20 (m, 2H), 3.70
(d, J=12.4 Hz, 1H), 3.65 (d, J=12.4 Hz, 1H), 2.16—2.02 (m, 4H),
1.83—1.76 (m, 2H), 0.75 (t, J=7.2 Hz, 3H); *C NMR: (101 MHz,
CDCl;) 6: 141.4, 128.9, 127.1, 126.1, 119.7, 55.8, 44.7, 32.6, 28.7,
12.2, 7.9; HRMS (ESI-TOF) Caled for CysHigN, [M+H]": 229.1448;
found 229.1450.

4-(Azidomethyl)-4-phenylheptanenitrile (31). Prepared ac-
cording to the general procedure A using alkene 11 (40.4 mg, 0.28
mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120 uL, 1.8 mmol),
H,0 (54 pL, 3 mmol) and MeCN (1.5 mL) as starting materials to
afford 31 (35.5 mg, 0.15 mmol, 53% vyield) as a colorless oil. IR v:
2961, 2248, 2101, 1460 cm™; 'H NMR (400 MHz, CDCl5) 6: 7.37
(dd, J=8.0, 7.2 Hz, 2H), 7.30—7.26 (m, 1H), 7.24—7.19 (m, 2H),
3.69 (d, J/=12.4 Hz, 1H), 3.64 (d, J=12.4 Hz, 1H), 2.21—1.97 (m,
4H), 1.75—1.64 (m, 2H), 1.24—0.98 (m, 2H), 0.89 (t, J=7.2 Hz,
3H); ®C NMR: (101 MHz, CDCl3) &: 141.7, 128.9, 127.1, 126.0,
119.7, 56.2, 44.5, 38.6, 32.9, 16.7, 14.4, 12.2; HRMS (ESI-TOF)
Caled for CyzH1gN, [M+H]': 243.1610; found 234.1611.

3-(1-(Azidomethyl)-2,3-dihydro-1H-inden-1-yl)propanenitrile
(3n). Prepared according to the general procedure A using alkene
1n (42.1 mg, 0.32 mmol), TMSN; (79 pL, 0.6 mmol), acrylonitrile
(120 pL, 1.8 mmol), H,0 (54 pL, 3 mmol) and MeCN (1.5 mL) as
starting materials to afford 3n (32.6 mg, 0.14 mmol, 45% yield) as
a colorless oil. IR v: 2925, 2246, 2099, 1452, 1264 cm_l; "4 NMR
(400 MHz, CDCl5) &: 7.29—7.20 (m, 3H), 7.17—7.10 (m, 1H), 3.48
(d, J=12.0 Hz, 1H), 3.44 (d, J=12.0 Hz, 1H), 3.05—2.85 (m, 2H),
2.34—1.92 (m, 6H); *C NMR (101 MHz, CDCls) &: 143.9, 143.7,
128.1, 126.9, 125.3, 123.2, 119.7, 59.4, 51.6, 33.4, 32.5, 30.1, 12.7;
HRMS (ESI-TOF) Caled for Cj3HisN, [M+H]™: 227.1297; found
227.1300.

5-Azido-4-phenylpentanenitrile (30). Prepared according to
the general procedure B using alkene 1o (35.0 mg, 0.34 mmol),
TMSN;3 (79 pL, 0.6 mmol), acrylonitrile (120 uL, 1.8 mmol), MeOH
(36 uL, 0.9 mmol) and acetone (1.5 mL) as starting materials to
afford 3o (54.1 mg, 0.27 mmol, 80% yield) as a colorless oil. IR v:
2923, 2247, 2099, 1454, 1263 cm_l; '"H NMR (400 MHz, CDCls) 6:
7.43—7.27 (m, 3H), 7.21 (d, J=7.6 Hz, 2H), 3.57 (dd, J/=12.0, 6.8
Hz, 1H), 3.48 (dd, J=12.0, 6.8 Hz, 1H), 3.02—2.91 (m, 1H),
2.33—2.03 (m, 3H), 1.99—1.86 (m, 1H); *C NMR (101 MHz, CDCl,)
6:139.1, 129.1, 127.9, 127.6, 119.0, 56.4, 44.7, 28.6, 15.1; HRMS
(ESI-TOF) Calcd for CiyH1,N, [M+H]': 201.1140; found 201.1141.

5-Azido-4-(p-tolyl)pentanenitrile (3p). Prepared according to
the general procedure A using alkene 1p (36.1 mg, 0.30 mmol),
TMSN;3 (79 uL, 0.6 mmol), acrylonitrile (120 uL, 1.8 mmol), H,0
(54 uL, 3 mmol) and MeCN (1.5 mL) as starting materials to afford
3p (37.9 mg, 0.18 mmol, 58 % vyield) as a colorless oil. IR v: 2925,
2247, 2098, 1515, 1266 cm™*; *H NMR (400 MHz, CDCls) &: 7.18 (d,
J=7.6 Hz, 2H), 7.09 (d, J=7.6 Hz, 2H), 3.54 (dd, J=12.0, 6.8 Hz,
1H), 3.45 (dd, J=12.4, 7.2 Hz, 1H), 2.98—2.86 (m, 1H), 2.34 (s,
3H), 2.31—2.04 (m, 3H), 1.96—1.82 (m, 1H); *C NMR (101 MHz,
CDCl5) 6: 137.6, 136.0, 129.8, 127.4, 119.1, 56.5, 44.3, 28.7, 21.0,
15.1; HRMS (ESI-TOF) Caled for CioH14N, [M+H]': 215.1297; found
215.1300.

5-Azido-4-(4-methoxyphenyl)pentanenitrile (3q). Prepared
according to the general procedure B using alkene 1q (39.7 mg,
0.29 mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120 uL, 1.8
mmol), MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as starting
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materials to afford 3q (39.9 mg, 0.17 mmol, 59% vyield) as a color-
less oil. IR v: 2976, 2903, 2250, 2100, 1513, 1250, 1051 cm™; *H
NMR (400 MHz, CDCl5) &: 7.12 (d, J=8.8 Hz, 2H), 6.90 (d, J/=8.8
Hz, 2H), 3.80 (s, 3H), 3.52 (dd, /=12.4, 6.8 Hz, 1H), 3.44 (dd, /=
12.4, 7.2 Hz, 1H), 2.97—2.85 (m, 1H), 2.32—2.04 (m, 3H), 1.94—
1.81 (m, 1H); **C NMR (101 MHz, CDCls) &: 159.1, 131.0, 128.6,
119.1, 114.5, 56.7, 55.2, 43.9, 28.8, 15.1; HRMS (ESI-TOF) Calcd
for Cy,H1N,O [M+H]*: 231.1246; found 231.1254.
5-Azido-4-(3-chlorophenyl)pentanenitrile (3r). Prepared ac-
cording to the general procedure B using alkene 1r (46.3 mg, 0.33
mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120 uL, 1.8 mmol),
MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as starting materi-
als to afford 3r (57.0 mg, 0.24 mmol, 73% yield) as a colorless oil.
IR v: 2973, 2903, 2247, 2098, 1408, 1073 cm_l; "H NMR (400 MHz,
CDCly) &: 7.35—7.27 (m, 2H), 7.21 (s, 1H), 7.15—7.08 (m, 1H),
3.56 (dd, J=12.4, 6.8 Hz, 1H), 3.49 (dd, /=12.4, 6.8 Hz, 1H),
3.01—2.90 (m, 1H), 2.36—2.24 (m, 1H), 2.23—2.06 (m, 2H),
1.99—1.84 (m, 1H); *C NMR (101 MHz, CDCls) &: 141.4, 135.0,
130.4, 128.1, 127.7, 126.0, 118.7, 56.1, 44.4, 28.5, 15.2; HRMS
(ESI-TOF) Calcd for Cy;H;CIN, [M+H]": 235.0750; found 235.0758.
5-Azido-4-(4-fluoro-3-methoxyphenyl)pentanenitrile (3s).
Prepared according to the general procedure B using alkene 1s
(48.3 mg, 0.32 mmol), TMSNj3 (79 uL, 0.6 mmol), acrylonitrile (120
uL, 1.8 mmol), MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as
starting materials to afford 3s (62.0 mg, 0.25 mmol, 79% yield) as
a colorless oil. IR v: 2973, 2903, 2248, 2100, 1611, 1517, 1072 cm_l;
'H NMR (400 MHz, CDCl;) &: 7.07 (dd, J=10.8, 8.4 Hz, 1H), 6.81
(dd, J=8.0, 2.0 Hz, 1H), 6.77—6.71 (m, 1H), 3.91 (s, 3H), 3.55 (dd,
J=12.4, 6.8 Hz, 1H), 3.47 (dd, J/=12.4, 6.8 Hz, 1H), 3.01—2.89 (m,
1H), 2.34—2.25 (m, 1H), 2.23—2.05 (m, 2H), 1.95—1.81 (m, 1H);
3¢ NMR (101 MHz, CDCl3) 6: 151.9 (d, J=245 Hz), 148.1 (d, /=
10.6 Hz), 135.6 (d, J/=3.8 Hz), 119.5 (d, J/=6.8 Hz), 118.9, 116.6 (d,
J=18.3 Hz), 113.1 (d, J=2.0 Hz), 56.4, 56.4, 44.4, 28.7, 15.1; °F
NMR (376 MHz, CDCl;) &: —135.9; HRMS (ESI-TOF) Calcd for
Cy1,H13FN,O [M+H]": 249.1152; found 249.1154.
5-Azido-4-methyl-4-(1-tosyl-1H-indol-3-yl)pentanenitrile (3t).
Prepared according to the general procedure B using alkene 1t
(97.4 mg, 0.31 mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120
uL, 1.8 mmol), MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as
starting materials to afford 3t (41.0 mg, 0.10 mmol, 32% vyield) as
a colorless oil. IR v: 2925, 2248, 2103, 1370, 1173 cm_l; ' NMR
(400 MHz, CDCl5) &: 8.02 (d, J=8.4 Hz, 1H), 7.74 (d, J=8.0 Hz, 2H),
7.59 (d, J=8.0 Hz, 1H), 7.39 (s, 1H), 7.34 (t, J/=7.8 Hz, 1H), 7.29—
7.20 (m, 3H), 3.64 (d, J/=12.4 Hz, 1H), 3.58 (d, J=12.0 Hz, 1H),
2.43—2.30 (m, 4H), 2.14—1.98 (m, 2H), 1.89—1.92 (m, 1H), 1.48
(s, 3H); *C NMR (101 MHz, CDCl5) &: 145.2, 135.9, 134.8, 129.9,
128.1, 126.7, 125.0, 124.7, 123.6, 123.5, 120.6, 119.4, 114.4, 59.8,
40.0, 32.8, 22.6, 21.5, 12.5. HRMS (ESI-TOF) Calcd for Cp3H,1N50,S
[M+H]": 408.1489; found 408.1487.
4-(Azidomethyl)-4-methyl-6-phenylhexanenitrile (3u). Pre-
pared according to the general procedure B using alkene 1u (43.3
mg, 0.29 mmol), TMSN; (79 pL, 0.6 mmol), acrylonitrile (120 pL,
1.8 mmol), MeOH (36 pL, 0.9 mmol) and acetone (1.5 mL) as
starting materials to afford 3u (47.0 mg, 0.18 mmol, 62% yield) as
a colorless oil. IR v: 2972, 2904, 2247, 2102, 1387, 1255, 1072 cm_l;
'H NMR (400 MHz, CDCl3) 6: 7.33—7.26 (m, 2H), 7.23—7.15 (m,
3H), 3.27 (d, J=12.4 Hz, 1H), 3.23 (d, J=12.4 Hz, 1H), 2.60—2.50
(m, 2H), 2.36—2.27 (m, 2H), 1.81—1.71 (m, 2H), 1.63—1.53 (m,
2H), 1.01 (s, 3H); **C NMR (101 MHz, CDCl3) &: 141.6, 128.5, 128.2,
126.1, 119.8, 59.1, 39.2, 37.3, 33.1, 29.9, 22.2, 12.0; HRMS
(ESI-TOF) Caled for Cy4H1gN, [M+H]': 243.1610; found 243.1611.
4-(Azidomethyl)-4-methylpentadecanenitrile (3v). Prepared
according to the general procedure B using alkene 1v (56.6 mg,
0.29 mmol), TMSN3 (79 uL, 0.6 mmol), acrylonitrile (120 uL, 1.8
mmol), MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as starting
materials to afford 3v (39.5 mg, 0.14 mmol, 47% yield) as a color-
less oil. IR v: 2926, 2855, 2247, 2101, 1466, 1295 cm™; "H NMR
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(400 MHz, CDCl5) &: 3.19 (d, J=12.4 Hz, 1H), 3.15 (d, J=12.4 Hz,
1H), 2.31—2.24 (m, 2H), 1.72—1.64 (m, 2H), 1.34—1.18 (m, 20H),
0.91 (s, 3H), 0.88 (t, J=6.8 Hz, 3H); °C NMR (101 MHz, CDCl;) &:
120.0,59.4,37.1, 36.9, 33.1, 31.9, 30.2, 29.59, 29.58, 29.56, 29.50,
29.3,23.3,22.7, 22.3, 14.1, 12.0. HRMS (ESI-TOF) Calcd for C;;H3,N,
[M+H]*: 293.2700; found 293.2708.
2-Azido-5-cyano-3-phenylpentyl acetate (3w). Prepared ac-
cording to the general procedure B using alkene 1w (52.4 mg, 0.30
mmol), TMSN;3 (79 pL, 0.6 mmol), acrylonitrile (120 pL, 1.8 mmol),
MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as starting materi-
als to afford 3w (29.7 mg, 0.11 mmol, 37% yield, 1.1/1 dr) as a
colorless oil; "H NMR (400 MHz, CDCl3) &: 7.41—7.30 (m, 3H), 7.26
—7.22 (m, 0.58H), 7.20—7.14 (m, 1.52H), 4.22—4.17 (m, 0.28H),
4.05 (dd, J=11.6, 2.8 Hz, 0.72H), 3.95—3.82 (m, 1.32H), 3.82—
3.73 (m, 0.84H), 3.00—2.90 (m, 0.29H), 2.8—2.69 (m, 0.68H),
2.49—2.36 (m, 0.70H), 2.32—2.17 (m, 1.2H), 2.09 (s, 0.89H), 2.07
(m, 2.02H), 2.06—1.88 (m, 2H); HRMS (ESI-TOF) Calcd for
C14H16N,0, [M+Na]": 295.1171; found 295.1175.
5-Azido-4-methyl-4-phenylhexanenitrile (3x). Prepared ac-
cording to the general procedure B using alkene 1x (38.4 mg, 0.29
mmol), TMSN;3 (79 pL, 0.6 mmol), acrylonitrile (120 pL, 1.8 mmol),
MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as starting materi-
als to afford 3x (29.6 mg, 0.13 mmol, 45% yield, 3.9/1 dr) as a
colorless oil; 'H NMR (400 MHz, CDCl3) &: 7.40—7.33 (m, 2H),
7.32—7.20 (m, 3H), 3.75 (g, J=6.8 Hz, 0.81H), 3.66 (q, J=6.4 Hz,
0.17H), 2.30—1.80 (m, 4H), 1.36 (s, 0.49H), 1.30 (s, 2.52H), 1.16 (d,
J=6.8 Hz, 0.52H), 1.00 (d, J/=6.8 Hz, 2.49H); HRMS (ESI-TOF)
Calcd for Cy3HiN, [M+H]": 229.1453; found 229.1462.
5-Azido-4-((8R,9S,13S5,14S)-13-methyl-17-0x0-7,8,9,11,12,13,
14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)pen-
tanenitrile (3y). Prepared according to the general procedure B
using alkene 1y (83.4 mg, 0.297 mmol), TMSNj3 (79 uL, 0.6 mmol),
acrylonitrile (120 pL, 1.8 mmol), MeOH (36 uL, 0.9 mmol) and
acetone (1.5 mL) as starting materials to afford 3y (44.3 mg, 0.12
mmol, 40% yield, dr n.d.) as a colorless oil. IR v: 3668, 2973, 2905,
2100, 1736, 1051 cm™; "H NMR (400 MHz, CDCl3) &: 7.27 (d, J=
7.2 Hz, 1H), 6.96 (d, J=8.0 Hz, 1H), 6.92 (s, 1H), 3.55 (dd, J/=12.4,
6.8 Hz, 1H), 3.46 (dd, /=12.4, 6.8 Hz, 1H), 2.91 (dd, /=8.4, 4.0 Hz,
2H), 2.51 (dd, J/=19.2, 8.8 Hz, 1H), 2.46—2.37 (m, 1H), 2.35—2.22
(m, 2H), 2.22—2.00 (m, 5H), 2.00—1.85 (m, 2H), 1.71—1.56 (m,
3H), 1.56—1.40 (m, 3H), 0.92 (s, 3H), 0.89—0.82 (m, 1H); HRMS
(ESI-TOF) Calcd for Cy3H,gN,O [M+H]': 377.2336; found 377.2337.
2-(2-(Azidomethyl)-2-phenylcyclopentyl)acetonitrile (5). Pre-
pared according to the general procedure B using alkene 4 (59.0
mg, 0.30 mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120 pL,
1.8 mmol), MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as
starting materials to afford 5 (44.8 mg, 0.19 mmol, 62% yield, dr
3.2/1) as a colorless oil. IR v: 2958, 2098, 1498, 1460, 1262 cm’l;
"4 NMR (400 MHz, CDCls) &: 7.42—7.21 (m, 5H), 3.65 (d, /=12.4
Hz, 1H), 3.57 (d, J=12.4 Hz, 0.84H), 3.41 (d, J=12.0 Hz, 0.21H),
2.71—2.55 (m, 1.70H), 2.52—2.42 (m, 0.22H), 2.42—2.30 (m,
0.86H), 2.25—2.10 (m, 2.32H), 2.09—1.97 (m, 1H), 1.93—1.63 (m,
3H); HRMS (ESI-TOF) Calcd for CyqHigN, [M+H]": 241.1448; found
241.1451.

Dimethyl 2-(2-azido-1-phenylethyl)succinate (3aa). Prepared
according to the general procedure B using alkene 1p (34.6 mg,
0.33 mmol), TMSN3 (79 pL, 0.6 mmol), diethyl fumarate (225 pL,
1.8 mmol), MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as
starting materials to afford 3aa (20.1 mg, 0.07 mmol, 21% yield, dr
2/1) as a colorless oil. IR v:2952, 2100, 1735, 1438 cm™"; "H NMR
(400 MHz, CDCly) &: 7.42—7.27 (m, 3H), 7.21—7.10 (m, 2H),
3.82—3.69 (m, 2.56H), 3.66 (s, 1.34H), 3.64—3.50 (m, 3.87H),
3.47—3.42 (m, 0.18H), 3.36—3.29 (m, 0.5H), 3.22—3.12 (m, 0.9H),
3.10—3.01 (m, 0.5H), 2.72 (dd, J=16.8, 9.6 Hz, 0.5H), 2.58 (dd,
J=16.8, 10.8 Hz, 0.51H), 2.44 (dd, /=16.8, 4.8 Hz, 0.53H), 2.21
(dd, J=16.8, 3.6 Hz, 0.43H); *C NMR (101 MHz, CDCls) &: 172.0,
138.6, 138.1, 129.1, 128.7, 128.1, 127.9, 127.8, 54.7, 53.2, 52.2,
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51.9,51.8,47.5,47.0, 44.6, 44.3, 34.9, 33.6; HRMS (ESI-TOF) Calcd
for C14H17N304 [M+H]™: 292.1292; found 292.1287.

3-(2-Azido-1-phenylethyl)cyclohexanone (3ab). Prepared ac-
cording to the general procedure B using alkene 1p (31.3 mg, 0.3
mmol), TMSN; (79 uL, 0.6 mmol), cyclohex-2-enone (173.0 mg,
1.8 mmol), MeOH (36 uL, 0.9 mmol) and acetone (1.5 mL) as
starting materials to afford 3ab (22.7 mg, 0.21 mmol, 31% vyield,
1/1 dr) as a colorless oil. IR v:2097, 1710, 1453, 1231 cm ; 'H
NMR (400 MHz, CDCls) &: 7.40—7.23 (m, 3.6 H), 7.20—7.10 (m,
1H), 7.10—6.92 (m, 0.4H), 3.96—3.67 (m, 0.80H), 3.67—3.57 (m,
1H), 3.50—3.23 (m, 0.24H), 3.02—2.90 (m, 0.31H), 2.82—2.60 (m,
0.74H), 2.59—2.49 (m, 0.41H), 2.48—2.29 (m, 1H), 2.27—2.12 (m,
1.36H), 2.12—1.86 (m, 2.62H), 1.85—1.46 (m, 3H), 1.46—1.31 (m,
0.49H), 1.30—1.14 (m, 0.62H). HRMS (ESI-TOF) Calcd for Cy4H;7N30
[M+H]": 244.1444; found 244.1444.

4-Methyl-4-phenyl-5-(4-phenyl-1H-1,2,3-triazol-1-yl)pentane-
nitrile (6). To a overdried flask cooled under N,, 3a (57.7 mg, 0.27
mmol), phenylacetylene (45 uL, 0.41 mmol), Cul (78.9 mg, 0.41
mmol), DIPEA (135 L, 0.82 mmol) and MeCN (4 mL) were added.
The resulting yellow mixture was stirred overnight at room tem-
perature. The reaction mixture was condensed and the residue
was passed through a pad of silica gel. The filtrate was condensed
and purified by column chromatography (PE/EA=3/1) to give 6
(7.7 mg, 0.18 mmol, 68% yield) as a white solid (decomposed
before melted). IR v: 3061, 2978, 2248, 1464 cm™; *H NMR (400
MHz, CDCls) 6: 7.63 (d, J=7.2 Hz, 2H), 7.45—7.32 (m, 5H), 7.31—
7.20 (m, 3H), 6.85 (s, 1H), 4.60 (d, J/=13.6 Hz, 1H), 4.47 (d, /=
13.6 Hz, 1H), 2.46—2.33 (m, 1H), 2.26—2.13 (m, 1H), 2.13—1.99
(m, 2H), 1.39 (s, 3H); *C NMR (101 MHz, CDCl5) 6: 147.2, 141.0,
130.4, 129.3, 128.8, 128.2, 127.9, 126.5, 125.6, 120.4, 119.4, 61.4,
42.7,35.2, 21.2, 12.5. HRMS (ESI-TOF) Caled for CyoH 0N, [M+H]":
317.1761; found 317.1776.

5-Amino-4-methyl-4-phenylpentanenitrile (7). To a solution
of 3a (64.0 mg, 0.30 mmol) in ethanol (3 mL), Pd/C (5 wt%, 8.3 mg)
was added. The mixture was degassed through three freeze-
pump-thaw cycles under H,. After stirred for 13 h at room tem-
perature, the reaction mixture was filtered through silica gel and
condensed in vacuo to obtain the product 7 (54.7 mg, 0.29 mmol,
97% vyield) as a colorless oil. IR v: 3385, 2973, 2903, 2102, 1387,
1072 cm™'; '"H NMR (400 MHz, CDCl;) 6: 7.36 (dd, J=8.0, 7.2 Hz,
2H), 7.31—7.20 (m, 3H), 2.95 (d, J=13.2 Hz, 1H), 2.74 (d, /=13.2
Hz, 1H), 2.23—2.08 (m, 2H), 2.07—1.84 (m, 2H), 1.35 (s, 3H), 0.91
(br's, 2H); *C NMR (101 MHz, CDCl3) 6: 143.0, 128.8, 126.6, 126.4,
120.0, 53.6, 42.9, 35.8, 21.1, 12.5. HRMS (ESI-TOF) Calcd for
CioHgN, [M+H]*: 189.1386; found 189.1388.

Methyl 5-azido-4-methyl-4-phenylpentanoate (8).[6] To a 25
mL round-bottom flask, 3a (221.8 mg, 1.04 mmol) and methanol 1
mL were added, followed by 1 mL of HCI/1,4-dioxane (4 mol/L, 4
equiv.) at room temperature. After stirring for 24 h, 10 mL of the
saturated sodium bicarbonate solution was added. The mixture
was extracted with 10 mL ethyl acetate 5 times, and the organic
phase was dried by sodium sulfate. The mixture was condensed
and purified by column chromatography (PE/EA=11/1) to give 8
(169.3 mg, 0.68 mmol, 66% yield) as a colorless liquid, and 3a was
also obtained (54.7 mg, 25% recovery). IR v: 2952, 2100, 1737,
1498, 1171 cm™; '"H NMR (400 MHz, CDCls) 6: 7.37—7.29 (m, 4H),
7.26—7.22 (m, 1H), 3.60 (s, 3H), 3.52 (d, J=12.0 Hz, 1H), 3.40 (d,
J=12.0 Hz, 1H), 2.21—2.09 (m, 2H), 2.06—1.88 (m, 2H), 1.38 (s,
3H); *C NMR (101 MHz, CDCl;) 6: 173.8, 143.1, 128.6, 126.7,
126.3, 62.8, 51.6, 42.1, 34.1, 29.1, 22.1; HRMS (ESI-TOF) Calcd for
Cy3H17N30, [M+H]": 248.1394; found 248.1383.

5-Methyl-5-phenylpiperidin-2-one (9).[14] To a solution of 8
(67.2 mg, 0.27 mmol) in methyl acetate (3 mL), Pd/C (5 wt%, 10
mol%, 57.4 mg) was added. The mixture was degassed through
three freeze-pump-thaw cycles under H, After being stirred for 24
h at room temperature, the reaction mixture was filtered through
silica gel and condensed in vacuo to obtain the product 9 (28.5 mg,
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0.15 mmol, 56% yield) as a colorless oil. IR v: 3251, 2926, 1665,
1497 ¢cm™; M NMR (400 MHz, CDCl5) &: 7.38—7.32 (m, 4H),
7.25—7.21 (m, 1H), 6.24—5.90 (br, 1H), 3.74—3.67 (m, 1H),
3.42—3.32 (m, 1H), 2.42—2.34 (m, 1H), 2.27—2.11 (m, 2H),
2.04—1.96 (m, 1H), 1.36 (s, 3H); *C NMR (101 MHz, CDCl) &:
171.9, 144.6, 128.7, 126.6, 125.5, 51.9, 36.5, 33.3, 28.6, 27.3; HRMS
(EI-TOF) Calcd for C;,H,sNO [M]*: 189.1154; found 189.1155.
4-Phenyl-2-(1-phenylvinyl)cyclopentanecarbonitrile (11). Pre-
pared according to the general procedure A using alkene 10 (63.7
mg, 0.29 mmol), TMSN; (79 uL, 0.6 mmol), acrylonitrile (120 pL,
1.8 mmol), H,0 (54 pL, 3 mmol) and MeCN (1.5 mL) as starting
materials to afford 11 (72.7 mg, 0.26 mmol, 92% yield, major iso-
mer/minor isomers 1.5/1) as a colorless oil. IR v: 3029, 2237, 2102,
1494, 1451 cm™; 'H NMR (400 MHz, CDCl3) &: 7.45—7.22 (m,
10H), 5.45 (s, 1H), 5.29 (d, J=1.2 Hz, 1H), 3.47—3.37 (m, 1H),
3.37—3.25 (m, 1H), 3.11 (td, J=8.4, 4.0 Hz, 1H), 2.65 (dt, J=14.0,
9.6 Hz, 1H), 2.46—2.35 (m, 1H), 2.24—2.07 (m, 2H); *C NMR (101
MHz, CDCl;) 6: 146.5, 143.6, 141.2, 128.7, 128.5, 127.8, 127.2,
126.7, 126.5, 121.2, 114.8, 47.7, 43.9, 38.7, 38.1, 33.8. HRMS
(ESI-TOF) Calcd for CyoHigN [M+H]": 274.1590; found 274.1592.
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Carboxylic acids and alcohols are widely commercially available, structurally diverse, benchtop stable, and
ubiquitous in both natural products and pharmaceutical agents, making them ideal coupling partners for
organic synthesis. Though various transformations have been developed by enabling the activation and
subsequent cross-coupling of carboxylic acids and alcohols in separate contexts, the direct coupling of these

two structural motifs to build value-added molecules is rare. Herein, we developed a direct deoxygenative

cross-coupling between carboxylic acids and alcohols for dialkyl ketone synthesis via photoredox/nickel dual
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catalysis. This protocol provides a powerful platform to construct a wide range of structurally diverse ketone

scaffolds with broad substrate scope, good functional group tolerance, step-economy and mild reaction

DOI: 10.1039/d4sc05420b

conditions, using simple and readily available substrates. Moreover, the large-scale synthesis and late-stage

rsc.li/chemical-science functionalization of biological molecules also demonstrate the potential practicality.

Due to the prevalence of ketones in natural products and
bioactive drugs' and their central role as versatile reactants in
synthetic chemistry,” the development of powerful methods for
ketone synthesis is highly desirable. In this context, a vast
number of methods have been developed to construct ketones.
Typically, ketone synthesis most often relies upon the addition
of an organometallic reagent to an aldehyde followed by
oxidation® or more recently, the use of carboxylic acid deriva-
tives to couple with various nucleophiles (Fig. 1a).* While
significant contributions have been made to this field, these
methods typically necessitate a prefunctionalization step and
often require nonabundant starting materials, such as air- and
moisture-sensitive alkyl organometallics,**” and organoboron
and organosilicon reagents,* which are not step-economical
and might lead to issues with functional group tolerance and
waste generation, thereby limiting the reaction scope and
practicality. To address this problem, we sought to develop
a robust platform to deliver ketones utilizing easily accessible
and commercially available starting materials under mild
conditions.

Carboxylic acids and alcohols are widely commercially
available, structurally diverse, benchtop stable, relatively
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nontoxic, and ubiquitous in both natural products and phar-
maceutical agents,” making them ideal coupling partners for
organic synthesis (Fig. 1b). In recent years, a variety of trans-
formations have been developed by enabling the activation and
subsequent cross-coupling of carboxylic acids and alcohols via
metallaphotoredox catalysis in separate contexts.® The direct
coupling of these two prevalent structural motifs to build value-
added molecules is significantly rare but highly of interest.
Conventionally, alcohols and carboxylic acids are most
commonly coupled to form esters,” and fragment cross-
coupling of these two structural motifs has been explored to
a lesser extent. Recently, the efficient direct coupling of
carboxylic acids and alcohols to forge new C(sp*)-C(sp?) bonds
has been developed via an N-heterocyclic carbene (NHC)-
promoted deoxygenation process by the MacMillan group
(Fig. 1c, left).® Despite this great achievement, developing new
types of cross-coupling reactions between these two molecules
has remained an appealing yet elusive goal. Considering the
importance of ketone scaffolds, we wondered if diverse ketones
could be accessed from the direct coupling of abundant
carboxylic acids and alcohols, where acids serve as acyl elec-
trophiles, and alcohols serve as nucleophiles (Fig. 1c, right). On
this subject, Hong developed a photoinduced method for
synthesizing ketones from alcohols and carboxylic acid deriva-
tives through NHC catalysis under mild reaction conditions.®
This approach worked well for benzoic acid, but was not effec-
tive for the alkanoic acid substrates. As a consequence, devel-
oping an efficient and new catalytic methodology to convert
carboxylic acids and alcohols into dialkyl ketone scaffolds is
still highly of interest and would complement Hong's strategy.

However, direct coupling of these two structural motifs
forming ketones in a desired manner is not as easy as might be
expected due to the potential competing cleavage of two C-O
bonds in these two molecules. The main challenge for realizing
this transformation was how to selectively achieve C-O bond
cleavage in both alcohols and carboxylic acids via two distinct
mechanisms. In recent years, the combination of photoredox
and nickel catalysis has emerged as a powerful tool in chemical
bond construction,” which might provide an alternative
protocol for the ketone preparations from alcohols'®" and
acids. In such a reaction, a transition-metal catalytic unit could
engage sequentially with the acyl electrophiles formed in situ
from carboxylic acids' and radicals generated from alcohols
through oxidative addition™ and radical capture.”*»** Then the
resulting diorganonickel adduct undergoes reductive elimina-
tion to afford the desired ketone scaffolds (Fig. 1d). Neverthe-
less, to achieve this goal, other potential competing reactions,
such as the esterification reaction® and decarboxylative trans-
formation,***** which are commonly encountered under basic
and photoredox conditions, are also a big problem and need to
be avoided.

In this work, we developed a photoredox-catalyzed synthetic
protocol for diverse dialkyl ketone synthesis from naturally
abundant carboxylic acids and alcohols under mild conditions
with good functional group compatibility, and broad substrate
scope. This protocol features no protection and deprotection
steps. Given the structural diversity of carboxylic acids and
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alcohols, the success of this protocol could potentially enhance
the synthesis of complex ketones. More significantly, ketones
can be directly constructed from two abundant starting mate-
rials, thus expanding the existing ketone synthetic routes.

To start our investigation, the synthetic method for ketones
was explored with the commercially available carboxylic acid 1
and alcohol 2 as the model substrate (Table 1). Based on
previously reported elegant carboxylic acid activations in ketone
synthesis,®"/*>®1* Boc,0 was chosen as the activating reagent to
generate mixed anhydride in situ from carboxylic acids. After
extensive reaction condition screening (see the ESIT for details),
we were pleased to find that the corresponding ketone 3 was
obtained in 73% isolated yield using N4 as the alcohol-acti-
vating agent and Cs,CO;/K,CO; and pyridine as bases in the
presence of a catalytic amount of NiBr,DME and L1 under
visible light irradiation in DMA/1,4-dioxane using Ir(ppy)s(-
dtbbpy)PF, as the photocatalyst (entry 1). The thiazole-based
NHC reagent N1 and other simple triazole-based NHC mole-
cules N2 and N3 are ineffective in this transformation (entry 2).
These initial optimization studies revealed the importance of
NHC types for the reaction efficiency. A slightly lower yield was
obtained when tBuOMe was used instead of 1,4-dioxane (entry
3). Other solvents, such as benzotrifluoride, tetrahydrofuran
and acetonitrile were also tested and the results indicated that

a

Table 1 Optimization of reaction conditions

1 mol% PC
10 mol%NiBr,"DME, 15 mol% Ly
Cs,C03 (1.5 squlvi K2C03 (1.3 equiv.)

Ny (1.5 equw) pyndme O M
1,4-Dioxane (0.1 M), r.t., 20 min Me ©

thenBoc,O (1.3 equiv.), 450-455 nm LEDs rt. 3

wm

NHC additives

Ph : N N

Q_Q CD JriaRes L

! tBu
Ny N 3 Ny, Bu

7
PC: Ir(ppy) (dtbpy)PFg

Entry Variation from optimized conditions Yield” (%)

1 None 5(73)

2 N, N,, and Nj; instead of N, 0, trace, 0

3 BuOMe instead of 1,4-dioxane 60

4 PhCF, THF, and MeCN instead of 1,4-dioxane 54, 13, <10

5 L,, L3, Ly, and L; instead of L, 37, 32, 30, trace
6 5 mol% NiBr,-DME, 7.5 mol% L1 78 (75)

7 No light irradiation 0

8 No NHC 0

9 No PC

o 90 b o £

“ Reaction conditions: 1 (0.3 mmol), 2 (0.42 mmol), 1 mol%
Ir(ppy)2(dtbbpy)PFs, 10 mol% NiBr,-DME, 15 mol% L;, Cs,CO; (0.45
mmol), K,CO; (1.3 equiv.), DMA (3 mL), N4 (1.5 mmol), pyridine (1.4
equlv) 1,4-dioxane (3 mL), Boc,O (1. 3 equiv.), 450-455 nm LEDs.

b Yields of 3 were determined by 'H NMR spectroscopy with
mesitylene as an internal standard and the isolated yield is shown in
parentheses. r.t., room temperature; NHC, N-heterocyclic carbene;
DME, 1,2-dimethoxyethane; DMA, N,N-dimethylacetamide.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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1,4-dioxane was more suitable for this transformation (entry 4).
Screening of a range of ligands revealed that acylation product 3
could also be generated, albeit in diminished yields (entry 5). A
slight increase in the yield was observed on reducing the
amount of NiBr,-DME and L1 (entry 6). Light irradiation was
essential for this transformation as it did not progress under
dark conditions (entry 7). Further control experiments showed
that NHC and the photocatalyst were indispensable in this
transformation (entries 8-9). It was worth noting that the side
products due to decarboxylation and esterification could be
detected.

With the optimized reaction conditions in hand, we then
investigated the scope of carboxylic acids and alcohols (Fig. 2).
We first probed the ability of various aliphatic acids for cross-
coupling in our system (3-22). Substituted phenyl propionic
acid and butyric acid derivatives yielded desired products in
moderate to good yields (3-10). A range of aliphatic acids,
including linear and cyclic acids, were amenable substrates,
providing the cross-coupling products in good to excellent
yields (11-18). Notably, carboxylic acids with additional func-
tionalities were also compatible with this protocol. For example,
various functional groups, such as alkyl chloride, ester, pro-
tected amine and ketone remain intact to furnish the

1 mol% Ir(ppy)s(dtbbpy)PFg
10 mol%NiBra*DME, 15 mol% Ly
o o Cs,CO; (1.5 equiv.), K,CO; (1.3 equiv.)
o, OH
R%H @ Na (15 equiv), pyridne
1,4-Dioxane (0.1 M), r.t., 20
then Boc;0 (1.3 equiv.), 450-455 nm LEDs, r.t

Iv(ODV)zLd\bbpylPFg

Scope of

o Me l Me
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J Tk e
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Fig. 2 Substrate scope for ketone synthesis. Standard conditions:
carboxylic acid (0.3 mmol), alcohol (0.42 mmol), 1 mol% Ir(ppy)a(-
dtbbpy)PFg, 10 mol% NiBr,-DME, 15 mol% L1, Cs,COz (0.45 mmol),
K>COs3 (1.3 equiv.), DMA (3 mL), N4 (1.5 mmol), pyridine (1.4 equiv.), 1,4-
dioxane (3 mL), Boc,O (1.3 equiv.), 450-455 nm LEDs. Isolated yield.
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corresponding cross-coupling products, potentially allowing for
the subsequent orthogonal functionalization (15-19). In
particular, carboxylic acids with synthetic handles, such as
halide (10 and 15), were readily incorporated into the accessible
ketone scaffolds, which highlights the potential applications for
the incorporation of these scaffolds into more complex targets.
Products derived from alkenyl acids were also tolerated, as
demonstrated by B,B-dimethylacrylic acid (20) and lineoic acid
(21). These results show the great potential for structural
modification and resource utilization of naturally existing
carboxylic acids. Heterocycle-containing carboxylic acid reacted
smoothly in this system, affording the deoxygenated cross-
coupling product in moderate yield (22). Of particular note is
that substituted phenyl acetic acid and hindered carboxylic
acids (23), such as N-Boc proline (24) and 2-phenyl propionic
acid (25) were not suitable for this transformation, yielding no
product. Additionally, experiments with various benzoic acid
derivatives were also performed under the standard conditions.
Unfortunately, these substrates were not compatible with our
system (26-27). This phenomenon could be attributed to the
diminished reactivity in carboxylic acid activation.

Having established that this transformation tolerates various
carboxylic acids, we turned our attention towards evaluating the
scope of alcohol components. Consistent with our expectation,
we were pleased to find that a wide variety of primary alcohols
were successfully applied in this protocol, furnishing the
desired ketones in moderate yields (28-32). The instability of
the corresponding alkyl radicals originating from alcohols
could be responsible for the relatively lower yield (29-32). Of
particular note is that the developed protocol was also tolerant
of the alcohol containing protected amine, as demonstrated by
31, which was isolated in 40% yield. Notably, the alkene-
retained product (32) was obtained in 39% yield, while intra-
molecular radical cyclization was not observed. This result
suggests the faster capture of the alkyl radical than 5-endo-trig
cyclizations under the specific reaction conditions. Secondary
alcohols, especially cyclic alcohols, ranging from four- to seven-
membered rings, were found to be viable coupling partners,
successfully delivering the corresponding products in 40-61%
yields (33-38). It is noteworthy that sterically encumbered
polycyclic alcohols, such as 2-adamantanol, were employed
without an appreciable decrease in the reaction efficiency (37). A
relatively increased yield was obtained when benzyl alcohols
were used, which is in line with the stability of the corre-
sponding radical intermediates from alcohols (38-41). With
these positive results in hand, we finally tested the feasibility of
tertiary alcohols, such as 1-methylcyclohexanol and tert-
butanol, and the experimental results indicated that no corre-
sponding cross-coupling product could be observed (42-43).

Given the exceptionally mild and simple conditions, we
sought to demonstrate the utility of this operationally conve-
nient method in the late-stage functionalization of complex
molecules. As shown in Fig. 3, the oxaprozin analogue 44 could
be generated efficiently with our strategy in 55% yield. Lith-
ocholic acid analogues could also underwent smoothly,
providing the deoxygenative ketone in 60% and 62% yield,
respectively (45 and 46). With stearic acid as an acyl donor, the

Chem. Sci., 2024, 15, 18405-18410 | 18407
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transformation proceeded efficiently, yielding 47 in 75% yield. A
naturally occurring steroid was also successfully employed and
afforded the corresponding product 48 in moderate yield.
Bronchodilator proxyphylline showed good reactivity to deliver
the product 49 in 21% yield. These results show great potential
for the structural modification of an array of complex biological
molecules, especially in medicinal chemistry.

To further showcase the synthetic utility of this developed
strategy, a large-scale experiment was conducted, providing the
desired ketone 3 in 71% yield (Fig. 4). There was almost no
change in the chemical yield, suggesting that large-scale
chemical production might be possible.

To gain further insight into the reaction mechanism, a series
of mechanistic studies were performed (Fig. 5). In the presence
of radical trap TEMPO, the reaction was completely shut down
(Fig. 5a), indicating that a radical intermediate might be
involved in this transformation. More importantly, a benzyl-
trapped product, 2,2,6,6-tetramethylpiperidin-1-yl benzoate 50
was observed via high resolution mass spectrometry, further
supporting that the reaction proceeds through a radical deox-
ygenative pathway and the intermediacy of a benzylic radical.
Furthermore, the generation of a benzylic radical from 2 in the
reaction also could be demonstrated by the observation of 51
when phenyl vinyl sulfone was added to the system. Addition-
ally, to further elucidate the possible reaction pathway, a radical
clock experiment was performed with cyclopropanemethanol
52 and the observation of ring-opening product 53 suggested
the involvement of a radical intermediate (Fig. 5b). In our
hypothesis, carboxylic acid is activated by Boc,0, leading to the
corresponding acyl-Ni oxidative insertion complex. The control
experiments are consistent with this hypothesis. First, when

o] Me
A~ Me @ 0
OH + Ho. . | - = .
standard conditions
Me Me Me Me

1, 5.2 mmol 2,7.28 mmol 3,71%, 0.982 g (72 h)

Fig. 4 Large-scale synthesis.
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primary carboxylic acid 1 is treated with Boc,0O and K,COs;,
moderate conversion to the expected mixed anhydride is
observed within 3 h (Fig. 5c). In the parallel experiment using
secondary carboxylic acid 55, there is no observable formation
of the mixed anhydride 56 at the same time point, resulting in
the formation of the acyl-Ni complex being difficult. These
results are in line with the limitations of carboxylic acids shown
in Fig. 2. It is noteworthy that the desired ketone 3 could be
detected in 68% NMR yield when Ni(COD), was used in place of
NiBr,-DME (Fig. 5d), indicating the presence of Ni(0) species.
Based on the previously reported literature®**'® and the
aforementioned mechanistic studies, a plausible mechanism
for this transformation is proposed in Fig. 6. The proposed
mechanism starts with the condensation of alcohol and NHC
(Ny), providing activated alcohol 57. Upon irradiation with
visible light, the photocatalyst Ir(ppy),(dtbbpy)PF I is known to
access the highly oxidizing excited state species Il (*Ir'") (Ej5¢
» I/ = + 0.66 V vs. SCE),"” which could be reductively
quenched by the activated alcohol 57, affording aminium
radical cation 58. Then a deprotonation process occurred at the
a-position of 58, yielding radical intermediate 59. Subsequent f-
scission occurred, thus generating the key alkyl intermediate
60. The nickel catalytic cycle is initiated by the oxidative addi-
tion of the Ni(0) catalyst 62 to an in situ-activated carboxylic acid
61 formed by Boc,O under basic conditions, to afford Ni(u)
species 64. Subsequently, efficient trapping of the alkyl radical

0 o o
(Boc ,0 o
Rk hoom e L, o
R "R!
abundant Bu
III N
R XN|°L BFs|
,Nl"Ln o\/,NFPh

Nickel catalysis Photoredox catalysls .lrlu

R
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x-Ni XNi'L,
R RE. 63 "
R1 m R? 57

2
R 60
66 R‘
Bu tBu B-scission RZ/\R‘
+ N Ph O N-Ph 60
O

R! 7<H

)o %

R? 58

Fig. 6 A plausible mechanism.
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60 provides Ni(m) complex 65, which undergoes reductive
elimination to yield the desired ketone 66 and Ni(i) complex 63.
Finally, the single electron transfer between Ni(1) species 63 and
reduced photocatalyst III (Ir'") regenerates the ground-state
photocatalyst I (Ir'™) and the Ni(0) catalyst, completing both
catalytic cycles.

Conclusions

In summary, we have developed a direct deoxygenative cross-
coupling between carboxylic acids and alcohols for ketone
synthesis via photoredox/nickel dual catalysis under mild
conditions. This protocol provides a powerful platform to
construct a wide range of structurally diverse ketone scaffolds
with broad substrate scope, good functional group tolerance,
step-economy and mild reaction conditions, using simple and
readily available carboxylic acids and widely abundant alco-
hols as starting materials. Given the structural diversity of
carboxylic acids and alcohols, the success of this metal-
laphotoredox-catalyzed deoxygenative cross-coupling protocol
could potentially enhance the synthesis of complex ketones. In
addition, this developed method will promote the resource
utilization of naturally abundant acids and alcohols and
enhance the preparation of ketone scaffolds. The exact roles of
carboxylic acids and alcohols were demonstrated by mecha-
nistic studies, as we hypothesized, that the carboxylic acids
provide the acyl group and the alcohols afford the alkyl group.
Asymmetric transformations of carboxylic acids and alcohols
into ketones are underway in our laboratory and will be re-
ported in due course.
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